This activity includes an assessment, analysis, and action tool that can be ...
This activity includes an assessment, analysis, and action tool that can be used by classrooms to promote understanding of how the complex current issues of energy, pollution, supply and consumption are not just global but also local issues.
In this activity, students are split into groups to examine a specific ...
In this activity, students are split into groups to examine a specific band of the electromagnetic spectrum and the absorption spectra of seven atmospheric gases in that wavelength range. Using a jigsaw approach, the students regroup to have an expert on each band to examine the full spectrum, identify and rank greenhouse gases, and estimate Earth's temperature from satellite data.
This lesson plan engages students in a real-life exploration of climate change ...
This lesson plan engages students in a real-life exploration of climate change as it is affected by greenhouse emissions from vehicles. The aim of this activity is for students to realize the impact of vehicle use in their family and to give students the opportunity to brainstorm viable alternatives to this use.
This is a basic animation/simulation with background information about the greenhouse effect ...
This is a basic animation/simulation with background information about the greenhouse effect by DAMOCLES. The animation has several layers to it that allow users to drill into more detail about the natural greenhouse effect and different aspects of it, including volcanic aerosols and human impacts from burning fossil fuels.
This short video examines the recent melting ice shelves in the Antarctica ...
This short video examines the recent melting ice shelves in the Antarctica Peninsula; the potential collapse of West Antarctic ice shelf; and how global sea levels, coastal cities, and beaches would be affected.
This video along with a background essay focuses on impacts of climate ...
This video along with a background essay focuses on impacts of climate change on the lives of Native Alaskans around Barrow, Alaska. Specific changes include the timing of the changes in the formation and breakout of sea ice and the impacts on subsistence living.
In this hands-on engineering activity, students will build a tabletop wind turbine. ...
In this hands-on engineering activity, students will build a tabletop wind turbine. Students get acquainted with the basics of wind energy and power production by fabricating and testing various blade designs for table-top windmills constructed from one-inch PVC pipe and balsa wood (or recycled materials). The activity includes lots of good media and Web resources supporting the science content.
This is a figure from the 2007 IPCC Assessment Report 4 on ...
This is a figure from the 2007 IPCC Assessment Report 4 on atmospheric concentrations of carbon dioxide, methane and nitrous oxide over the last 10,000 years (large panels) and since 1750 (inset panels).
This is a laboratory activity in which students will compare the amount ...
This is a laboratory activity in which students will compare the amount of carbon dioxide in four different sources of gas and determine the carbon dioxide contribution from automobiles. They test ambient air, human exhalation, automobile exhaust, and nearly pure carbon dioxide from a vinegar/baking soda mixture.
In this investigation learners research the effects of melting sea ice in ...
In this investigation learners research the effects of melting sea ice in the Bering Sea Ecosystem. They create research proposals to earn a place on the scientific research vessel Healy and present their findings and proposals to a Research Board committee.
Students conduct an energy audit to determine how much carbon dioxide their ...
Students conduct an energy audit to determine how much carbon dioxide their family is releasing into the atmosphere and then make recommendations for minimizing their family's carbon footprint. Students are specifically asked to understand the units of power and energy to determine the cost of running various household appliances. Finding the amount of carbon dioxide emitted for different types of energy and determining ways of reducing carbon dioxide output is the outcome of the lesson.
This detailed chemistry lesson from the U.S. Department of Energy focuses on ...
This detailed chemistry lesson from the U.S. Department of Energy focuses on transforming vegetable oil into biodiesel through a process of transesterification. The process described offers a good model for many chemical reaction processes that are used to produce a viable product.
In this lab activity students generate their own biomass gases by heating ...
In this lab activity students generate their own biomass gases by heating wood pellets or wood splints in a test tube. They collect the resulting gases and use the gas to roast a marshmallow. Students also evaluate which biomass fuel is the best by their own criteria or by examining the volume of gas produced by each type of fuel.
In this lesson, students develop an understanding of the relationship between natural ...
In this lesson, students develop an understanding of the relationship between natural phenomena, weather, and climate change: the study known as phenology. In addition, they learn how cultural events are tied to the timing of seasonal events. Students brainstorm annual natural phenomena that are tied to seasonal weather changes. Next, they receive information regarding the Japanese springtime festival of Hanami, celebrating the appearance of cherry blossoms. Students plot and interpret average bloom date data from over the past 1100 years.
This set of animations and interactive simulations from the Byrd Polar Research ...
This set of animations and interactive simulations from the Byrd Polar Research Center at Ohio State University helps students develop an understanding of models used to understand the Earth System. Students consider the types of data that need to be included in a climate model, looking at inputs and outputs as well as variables, such as land surface, and how to measure changes of different parts of Earth's surface over time.
C-Learn is a simplified version of the C-ROADS simulator. Its primary purpose ...
C-Learn is a simplified version of the C-ROADS simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.
This PBS video shows how Klaus Lackner, a geophysicist at Columbia University, ...
This PBS video shows how Klaus Lackner, a geophysicist at Columbia University, is trying to tackle the problem of rising atmospheric CO2 levels by using an idea inspired by his daughter's 8th-grade science fair project.
In this activity, students will determine the environmental effects of existing cars ...
In this activity, students will determine the environmental effects of existing cars and a fleet consisting of their dream cars. They compute how many tons of heat-trapping gases are produced each year, how much it costs to fuel the cars, and related information. Then, students research and prepare a report about greener transportation choices.
Students work in groups, plotting carbon dioxide concentrations over time on overheads ...
Students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.
In this lab activity, students use a chemical indicator (bromothymol blue) to ...
In this lab activity, students use a chemical indicator (bromothymol blue) to detect the presence of carbon dioxide in animal and plant respiration and in the burning of fossil fuels and its absence in the products of plant photosynthesis. After completing the five parts of this activity, students compare the colors of the chemical indicator in each part and interpret the results in terms of the qualitative importance of carbon sinks and sources.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.