Updating search results...

Search Resources

27 Results

View
Selected filters:
  • refraction
Assessment:  Light
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Mixed format assessment (mutliple choice, fill in the blank, short answer) covering reflection, refraction, visible spectrum, waves and opacity.  There is a question at the end of the test over scientific investigation design and light.

Subject:
Force/Motion/Energy
Material Type:
Lesson Plan
Author:
Erin Brown
Date Added:
07/25/2019
Bending Light
Unrestricted Use
CC BY
Rating
0.0 stars

Explore bending of light between two media with different indices of refraction. See how changing from air to water to glass changes the bending angle. Play with prisms of different shapes and make rainbows.

Subject:
Force/Motion/Energy
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Emily Moore
Kathy Perkins
Noah Podolefsky
Sam Reid
Trish Loeblein
University of Colorado at Boulder
Date Added:
05/09/2011
Bending Light - Determining the Index of Refraction of Different Liquids
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students set up an apparatus as shown in the companion document. Using geometry coupled with Snell's Law, students are able to determine the index of refraction of multiple liquids. .

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Date Added:
11/18/2019
Bubbles and Biosensors
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work in groups to create soap bubbles on a smooth surface, recording their observations from which they formulate theories to explain what they see (color swirls on the bubble surfaces caused by refraction). Then they apply this theory to thin films in general, including porous films used in biosensors, listing factors that could change the color(s) that become visible to the naked eye, and learn how those factors can be manipulated to give information on gene detection. Finally (by experimentation or video), students see what happens when water is dropped onto the surface of a Bragg mirror.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caleb Swartz
Date Added:
09/18/2014
Cosmology and Astronomy: Refraction of Seismic Waves
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This 9-minute video lesson looks at refraction and focuses on refraction in seismic waves. [Cosmology and Astronomy playlist: Lesson 53 of 85]

Subject:
Earth and Space Systems
Science
Material Type:
Lecture
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Salman Khan
Date Added:
02/20/2011
Daylighting Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the many different ways that engineers provide natural lighting to interior spaces. They analyze various methods of daylighting by constructing model houses from foam core board and simulating the sun with a desk lamp. Teams design a daylighting system for their model houses based on their observations and calculations of the optimal use of available sunlight to their structure.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Landon B. Gennetten
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
10/14/2015
The Energy of Music
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to sound energy concepts and how engineers use sound energy. Through hands-on activities and demonstrations, students examine how we know sound exists by listening to and seeing sound waves. They learn to describe sound in terms of its pitch, volume and frequency. They explore how sound waves move through liquids, solids and gases. They also identify the different pitches and frequencies, and create high- and low-pitch sound waves.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sharon D. Perez-Suarez
Date Added:
09/18/2014
Exploring Light: Absorb, Reflect, Transmit or Refract?
Read the Fine Print
Educational Use
Rating
0.0 stars

In a hands-on way, students explore light's properties of absorption, reflection, transmission and refraction through various experimental stations within the classroom. To understand absorption, reflection and transmission, they shine flashlights on a number of preselected objects. To understand refraction, students create indoor rainbows. An understanding of the fundamental properties of light is essential to designing an invisible laser security system.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Meghan Murphy
Date Added:
09/18/2014
Geometric Optics
Unrestricted Use
CC BY
Rating
0.0 stars

How does a lens form an image? See how light rays are refracted by a lens. Watch how the image changes when you adjust the focal length of the lens, move the object, move the lens, or move the screen.

Subject:
Mathematics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Danielle Harlow
Kathy Perkins
Michael Dubson
Mindy Gratny
Date Added:
07/13/2008
Laser Light Properties: Protecting the Mummified Troll!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn and use the properties of light to solve the following challenge: "A mummified troll was discovered this summer at our school and it has generated lots of interest worldwide. The principal asked us, the technology classes, to design a security system that alerts the police if someone tries to pilfer our prized possession. How can we construct a system that allows visitors to view our artifact during the day, but invisibly protects it at night in a cost-effective way?"

Subject:
Science
Scientific and Engineering Practices
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Meghan Murphy
Date Added:
09/18/2014
Learning Light's Properties
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the basic properties of light the concepts of light absorption, transmission, reflection and refraction, as well as the behavior of light during interference. Lecture information briefly addresses the electromagnetic spectrum and then provides more in-depth information on visible light. With this knowledge, students better understand lasers and are better prepared to design a security system for the mummified troll.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Meghan Murphy
Date Added:
09/18/2014
Light It Up
Read the Fine Print
Educational Use
Rating
0.0 stars

Through an introduction to the design of lighting systems and the electromagnetic spectrum, students learn about the concept of daylighting as well as two types of light bulbs (lamps) often used in energy-efficient lighting design.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Janet Yowell
Landon B. Gennetten
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Light Properties
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the basic properties of light and how light interacts with objects. They are introduced to the additive and subtractive color systems, and the phenomena of refraction. Students further explore the differences between the additive and subtractive color systems via predictions, observations and analysis during three demonstrations. These topics help students gain a better understanding of how light is connected to color, bringing them closer to answering an overarching engineering challenge question.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Faber
Ellen Zielinski
Marissa H. Forbes
Date Added:
09/18/2014
Make That Invisible! Refractive Index Matching
Read the Fine Print
Educational Use
Rating
0.0 stars

Students determine the refractive index of a liquid with a simple technique using a semi-circular hollow block. Then they predict the refractive index of a material (a Pyrex glass tube) by matching it with the known refractive index of a liquid using the percent light transmission measurement. The homemade light intensity detector uses an LED and multimeter, which are relatively inexpensive (and readily available) compared to commercially available measurement instruments.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marjorie Hernandez
Date Added:
09/18/2014
Needing Illumination: Investigating Light
Read the Fine Print
Educational Use
Rating
0.0 stars

This is the first lesson of this unit to introduce light. Lessons 1-5 focus on sound, while 6-9 focus on light. In this lesson, students learn the five words that describe how light interacts with objects: "transparent," "translucent," "opaque," "reflection" and "refraction."

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Frank Burkholder
Janet Yowell
Luke Simmons
Date Added:
09/18/2014
Quantifying Refraction
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the relevant equations for refraction (index of refraction, Snell's law) and how to use them to predict the behavior of light waves in specified scenarios. After a brief review of the concept of refraction (as learned in the previous lesson), the equations along with their units and variable definitions, are introduced. Student groups work through a few example conceptual and mathematical problems and receive feedback on their work. Then students conduct the associated activity during which they practice using the equations in a problem set, examine data from a porous film like those used in biosensors, and apply the equations they learned to a hypothetical scenario involving biosensors.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caleb Swartz
Date Added:
09/18/2014
See the Genes
Read the Fine Print
Educational Use
Rating
0.0 stars

Through this concluding lesson and its associated activity, students experience one valuable and often overlooked skill of successful scientists and engineers communicating your work and ideas. They explore the importance of scientific communication, including the basic, essential elements of communicating new information to the public and pitfalls to avoid. In the associated activity, student groups create posters depicting their solutions to the unit's challenge question accurate, efficient methods for detecting cancer-causing genes using optical biosensors which includes providing a specific example with relevant equations. Students are also individually assessed on their understanding of refraction via a short quiz. This lesson and its associated activity conclude the unit and serve as the culminating Go Public phase of the Legacy Cycle, providing unit review and summative assessment.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caleb Swartz
Date Added:
09/18/2014
Show Me the Genes
Read the Fine Print
Educational Use
Rating
0.0 stars

By this point in the unit, students have learned all the necessary information and conceptualized a design for how an optical biosensor could be used to detect a target strand of DNA associated with a cancer-causing gene as their solution to the unit's challenge question. Now student groups act as engineers again, using a poster format to communicate and prove the validity of the design. Successful posters include a description of refraction, explanations of refraction in a thin film, and the factors that can alter the interference pattern of a thin film. The posters culminate with an explanation of what is expected to be seen in a biosensing device of this type if it were coupled to a target molecule, proven with a specific example and illustrated with drawings and diagrams throughout. All the poster elements combine to prove the accuracy and viability of this method of gene detection. Together with its associated lesson, this activity functions as part of the summative assessment for this unit.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caleb Swartz
Date Added:
09/18/2014