Updating search results...

Search Resources

78 Results

View
Selected filters:
  • Match Fishtank
Fighting for Change
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this unit students begin to explore the concepts of fairness and justice. Over the course of the unit students are exposed to numerous ordinary people who worked together to overcome injustice and fight for a better future for others. Students will grapple with what it means if something is fair and just, particularly in regard to race, class, gender, and ability. Then students will be challenged to think about the different ways in which people showed courage, patience, and perseverance in order to challenge things that were fundamentally unfair. Over the course of the unit it is our hope that students are able to acknowledge and realize that things aren't always fair in the world around them, but that doesn't mean that it always has to be that way. It is our hope that students see that identifying the problem is only the first step and that anyone who has the right mindset and beliefs can inspire others to work together to create a more just future for everyone. Essentially, we hope that this unit begins to plant the seed within our students that they can be activists and take charge of their own lives and communities. No one is too young to inspire change. It is important to note that this unit primarily focuses on big-scale changes. Additional projects and lessons should be added to help students understand how what they learned connects to change on a smaller scale.

In reading, students will continue to work on developing their informational reading strategies, particularly when reading a collection of narrative nonfiction texts. The focus of this unit is on reinforcing and practicing targeted informational strategies in the context of a narrative structure. In particular, students will be pushed to describe the connection between individuals, events, and pieces of information. Students will also be challenged to think about the reasons an author gives to support a point and how those reasons look slightly different in a narrative informational text than in a scientific or history-based informational text.

In writing, students will continue to work on writing responses to the text that provide relevant and accurate information along with some evidence of inferential or critical thinking.

Subject:
Communication and Multimodal Literacy
English
Fiction
Reading
Writing
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Provider:
Match Fishtank
Provider Set:
Fishtank ELA
Date Added:
01/01/2017
Fighting for Change: Children of the Civil Rights Movement
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this unit students study the Civil Rights Movement through the eyes of the youth and children who experienced the struggles, hardships, victories, defeats, and possibilities firsthand. Students will be challenged to analyze the key characteristics shared by children who participated in the Civil Rights Movement, particularly their courage, commitment, bravery, and unending commitment to fighting for the cause. Over the course of the unit students will realize that through community organizing and a strong desire for justice, regular people, especially youth, were able to come together to use a variety of nonviolent tactics to fight for change, even when faced with resistance, oppression, and violence on a daily basis. The stories and experiences in the unit will highlight that the Civil Rights Movement was driven by the heroism of regular people and that anyone can participate in the fight against injustice. It is our hope that this unit, in conjunction with other units from the sequence, will empower students to notice and challenge the injustices, relying on their knowledge of history and the lessons they've learned from those who have fought before them.

In this unit students refine their skills as critical consumers of texts by analyzing the point of view from which a text is written and noticing how the point of view influences what and how information is presented to a reader. Students will read multiple accounts of the same topic or event and be challenged to notice the similarities and differences in the points of view they represent and how the author uses evidence and reasons to support a particular point of view. Photographs are an important part of the texts in the unit. Students will be pushed to analyze photographs as a source of information to support an author's point. Students will also continue to practice determining one or more main ideas of a text and explaining how they are supported by key details, summarizing a text, and explaining the relationship between one or more events or individuals in a historical text. Over the course of the unit students will also be required to access information from multiple sources in order to integrate information and draw conclusions about an event or topic.

Subject:
Communication and Multimodal Literacy
English
Fiction
Reading
Writing
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Provider:
Match Fishtank
Provider Set:
Fishtank ELA
Date Added:
01/01/2017
Folktales and Stories
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This unit continues the yearlong theme of what it means to be a good person in a community by pushing students to think about how the lessons and morals from traditional stories and folktales connect to their own lives and communities. The unit launches by listening to the book A Story, A Story, in which students see the power of storytelling not only for entertainment, but also for learning valuable life lessons. Over the course of the unit, students will explore lessons and morals about hard work, happiness, friendship, honesty, and humility. Through discussion and writing, students will be challenged to connect their own lives with the sometimes-abstract lessons and stories in order to build character and a strong community. It is our hope that this unit, in connection with other units in the sequence, will help students internalize the idea that we not only learn from our own experiences, but we also learn and grow by hearing the experiences of others.

In reading, this unit builds on the foundation set in unit 1. Students will continue to practice asking and answering questions about key details in partners, individually, and in discussion, although questions will require a deeper and more nuanced understanding of the text than in unit 1. Students will learn to use the text and illustrations to both identify the setting of a story and think about why the setting is important to the story. Students will also be pushed to deeply analyze characters traits, actions, and feelings and how those change and evolve over the course of the story. Once students have a deep understanding of the setting and character motivation, students will grapple with figuring out the lessons the characters learn and how they learn them. Finally, in this unit students will begin to notice the nuanced vocabulary authors use to help a reader visualize how a character is feeling or acting.

In writing, students will continue to write daily in response to the text. The focus of this unit is on ensuring that students are answering the question correctly and using correct details from the illustrations and text to support their answer.

Subject:
Communication and Multimodal Literacy
English
Fiction
Reading
Writing
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Provider:
Match Fishtank
Provider Set:
Fishtank ELA
Date Added:
01/01/2017
Government and Biographies of Famous Leaders
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This unit serves as a foundation for understanding the way in which the American government was formed and the way it is structured. The unit has three main sections. In the first section, students learn about the functions of government, the three main branches of government, and how the branches work together to meet the ever-changing needs of our country. In this section students will be challenged to think about how government is useful to its citizens and about the key powers of each branch. In the second section, students explore elections and how people become elected officials. Students also explore the women's suffrage movement, why women couldn't vote before 1920, and what changes brought about women's suffrage in the United States. Finally, in the third section, students read biographies of a few courageous individuals who overcame racism, sexism, and hardships to prove that they deserved a spot in government and that they would do whatever it takes to fight for and push for change. During this final section, students will be challenged to think about how the actions of others can inspire us to drive for change, especially in the current political climate.

This unit expands on the work done in units 1 and 2 to build reading skills. Students will continue to develop their skills as critical consumers of a text by annotating for main idea and details that support the main idea of a text, summarizing sections of a text, explaining the connection between ideas and concepts, interpreting information presented through different text features, and describing the structure of different paragraphs. In this unit students will also be challenged to think about how an author uses evidence and reasoning to support particular points or ideas in a text. They will also be challenged to integrate information from one text with information they learn in another text about the same topic.

Subject:
Communication and Multimodal Literacy
English
Fiction
Reading
Writing
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Provider:
Match Fishtank
Provider Set:
Fishtank ELA
Date Added:
01/01/2017
Grade 3 Unit 1: Place Value, Rounding, Addition, and Subtraction
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In the first unit of Grade 3, students will build on their understanding of the structure of the place value system from Grade 2 (MP.7), start to use rounding as a way to estimate quantities (3.NBT.1), as well as develop fluency with the standard algorithm of addition and subtraction (3.NBT.2). Throughout the unit, students attend to the precision of their calculations (MP.6) and use them to solve real-world problems (MP.4).

In Grade 2, students developed an understanding of the structure of the base-ten system as based in repeated bundling in groups of 10. With this deepened understanding of the place value system, Grade 2 students “add and subtract within 1000, with composing and decomposing, and they understand and explain the reasoning of the processes they use” (NBT Progressions, p. 8). These processes and strategies include concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction (2.NBT.7). As such, at the end of Grade 2, students are able to add and subtract within 1,000 but often aren’t relying on the standard algorithm to solve.

Thus, Unit 1 starts off with reinforcing some of this place value understanding of thousands, hundreds, tens, and ones being made up of 10 of the unit to its right that students learned in Grade 2. Students use this sense of magnitude and the idea of benchmark numbers to first place numbers on number lines of various endpoints and intervals, and next use those number lines as a model to help students round two-digit numbers to the tens place as well as three-digit numbers to the hundreds and tens place (3.NBT.1). Next, students focus on developing their fluency with the addition and subtraction algorithms up to 1,000, making connections to the place value understandings and other models they learned in Grade 2 (3.NBT.2). Last, the unit culminates in a synthesis of all learning thus far in the unit, in which students solve one- and two-step word problems involving addition and subtraction and use rounding to assess the reasonableness of their answer (3.OA.8), connecting the NBT and OA domains. These skills are developed further and built upon in subsequent units in which multiplication and division are added to the types of word problems students estimate and solve.

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 3 Unit 2: Multiplication and Division, Part 1
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Unit 2 opens students’ eyes to some of the most important content students will learn in Grade 3—multiplication and division. In this unit, “students begin developing these concepts by working with numbers with which they are more familiar, such as 2s, 5s, and 10s, in addition to numbers that are easily skip counted, such as 3s and 4s,” allowing the cognitive demand to be on the concepts of multiplication and division themselves rather than the numbers (CCSS Toolbox, Sequenced Units for the Common Core State Standards in Mathematics Grade 3). Then in Unit 3, students will work on the more challenging units of 0, 1, 6–9, and multiples of 10.

In Grade 2, students learned to count objects in arrays using repeated addition (2.OA.4) to gain a foundation to multiplication. They’ve also done extensive work on one- and two-step word problems involving addition and subtraction, having mastered all of the problem types that involve those operations (2.OA.1). Thus, students have developed a strong problem-solving disposition and have the foundational content necessary to launch right into multiplication and division in this unit.

At the start of this unit, students gain an understanding of multiplication and division in the context of equal group and array problems in Topic A. To keep the focus on the conceptual understanding of multiplication and division (3.OA.1, 3.OA.2), Topic A does not discuss specific strategies to solve, and thus students may count all objects (a Level 1 strategy) or remember their skip-counting and repeated addition (Level 2 strategies) from Grade 2 to find the product. In Topics B and C, however, the focus turns to developing more efficient strategies for solving multiplication and division, including skip-counting and repeated addition (Level 2 strategies) as well as “just knowing” the facts, which works toward the goal that “by the end of grade 3, [students] know from memory all products of two single-digit numbers and related division facts” (3.OA.7). As the Operations and Algebraic Thinking Progression states, “mastering this material and reaching fluency in single-digit multiplications and related division may be quite time consuming because there are no general strategies for multiplying or dividing all single-digit numbers as there are for addition or subtraction” (OA Progression, p. 22). Thus, because “there are many patterns and strategies dependent upon specific numbers,” they first work with factors of 2, 5, and 10 in Topic B, since they learned these skip-counting sequences in Grade 2. Then in Topic C, they work with the new factors of 3 and 4. Only then, when students have developed more familiarity with these factors, will students solve more complex and/or abstract problems with them, including determining the unknown whole number in a multiplication or division equation relating three whole numbers (3.OA.4) and solving two-step word problems using all four operations (3.OA.3, 3.OA.8), assessing the reasonableness of their answers for a variety of problem types in Topic D.

Throughout the unit, students engage in a variety of mathematical practices. The unit pays particular attention to reasoning abstractly and quantitatively, as students come to understand the meaning of multiplication and division and the abstract symbols used to represent them (MP.2). Further, students model with mathematics with these new operations, solving one- and two-step equations using them (MP.4).

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 3 Unit 3: Multiplication and Division, Part 2
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Unit 3 extends the study of factors from 2, 3, 4, 5, and 10, which students explored in Unit 2, to include all units from 0 to 10, as well as multiples of 10 within 100. To work with these more challenging units, students will rely on skip-counting (a Level 2 strategy) and converting to an easier problem (a Level 3 strategy dependent on the properties of operations). They then will apply their understanding of all four operations to two-step word problems as well as arithmetic patterns. Finally, the unit culminates with a focus on categorical data, where students draw and solve problems involving scaled picture graphs and scaled bar graphs, a nice application of the major work of multiplication and division.

Topic A begins by reminding students of the commutative property they learned in Unit 2, as well as introducing them to the distributive and associative properties, upon which they will rely for many of the strategies they learn for the larger factors. In order to be able to use these properties, they need to understand how to compute with a factor of 1, which they explore along with 0, as well as understand how to use parentheses. They’ll then explore the factors of 6, 7, 8, and 9 in Topics B and C. Because of the increased difficulty of these facts, students will rely on both skip-counting (a Level 2 strategy) as well as converting to an easier problem (a Level 3 strategy). Converting to an easier problem is dependent on the properties of operations (e.g., to find 6 x 7, think of 5 x 7 and add a group of 7 is dependent on the distributive property). Thus, students will work with the properties extensively throughout the unit, with their understanding of them and notation related to them growing more complex and abstract throughout the unit. In Topic D, students will multiply one-digit numbers by multiples of 10 and by two-digit numbers using the associative property. Then, students solve two-step word problems involving all four operations, assessing the reasonableness of their answer, and identify arithmetic patterns and explain them using the properties of operations. Finally, students explore picture graphs in which each picture represents more than one object and bar graphs where the scale on the axis is more than 1, a key development from Grade 2 (3.MD.3). As the Progressions note, “these developments connect with the emphasis on multiplication in this grade” (MD Progression, p. 7). Students also solve one- and two-step word problems related to the data in these plots, relying on the extensive work students have done with word problems throughout the year. Thus, this supporting cluster standard nicely enhances the major work they’ve been working on throughout this and the previous unit.

In Unit 3, students deepen their understanding of multiplication and division, including their properties. “Mathematically proficient students at the elementary grades use structures such as…the properties of operations…to solve problems” (MP.7) (Standards for Mathematical Practice: Commentary and Elaborations for K–5, p. 9). Students use the properties of operations to convert computations to an easier problem (a Level 3 strategy), as well as construct and critique the reasoning of others regarding the properties of operations (MP.3). Lastly, students model with mathematics with these new operations, solving one- and two-step equations using them (MP.4).

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 3 Unit 4: Area
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In Unit 4, students understand area as how much two-dimensional space a figure takes up and relate it to their work with multiplication in Units 2 and 3.

In early elementary grades, students may have informally compared area, seeing which of two figures takes up more space. In Grade 2, students, partitioned a rectangle into rows and columns of same-sized squares and counted to find the total number of them, including skip-counting and repeated addition to more efficiently do so (2.G.2, 2.OA.4).

Students begin their work in this unit by developing an understanding of area as an attribute of plane figures (3.MD.5) and measure it by counting unit squares (3.MD.6). After extensive work to develop students’ spatial structuring, students connect area to the operation of multiplication of length and width of the figure (3.MD.7a, b). Lastly, students connect the measure of area to both multiplication and area, seeing with concrete cases that the area of a rectangle with whole-number side lengths a and b+c is the sum of a×b and a×c (3.MD.7c), and using the more general idea that area is additive to find the area of composite figures (3.MD.7d). Thus, the unit serves as a way to link topics and thinking across units, providing coherence between the work with multiplication and division in Units 2 and 3 (3.OA) with the work of area in this unit (3.MD.C).

Students will engage with many mathematical practices deeply in the unit. For example, students “use strategies for finding products and quotients that are based on the properties of operations; for example, to find [the area of a rectangle by multiplying] 4×7, they may recognize that 7=5+2 and compute 4×5+4×2. This is an example of seeing and making use of structure (MP.7). Such reasoning processes amount to brief arguments that students may construct and critique (MP.3)” (PARCC Model Content Frameworks for Mathetmatics, p. 16). Further, students make use of physical tiles, rulers to relate side lengths to physical tiles, and later in the unit, the properties of operations themselves in order to find the area of a rectangle (MP.5). Additionally, “to build from spatial structuring to understanding the number of area-units as the product of number of units in a row and number of rows, students might draw rectangular arrays of squares and learn to determine the number of squares in each row with increasingly sophisticated strategies, such as skip-counting the number in each row and eventually multiplying the number in each row by the number of rows (MP.8)” (GM Progression, p. 17).

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 3 Unit 5: Shapes and Their Perimeter
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In Unit 5, students explore concepts of perimeter and geometry. Students have gradually built their understanding of geometric concepts since Kindergarten, when students learn to name shapes regardless of size and orientation. They also learn to distinguish between flat and solid shapes. In Grade 1, students’ understanding grows more nuanced, as they learn to distinguish between defining and non-defining attributes, as well as compose and decompose both flat and solid shapes. In Grade 2, students draw and identify shapes with specific attributes. All of this understanding gets them ready for Grade 3, in which students begin their journey of measuring those attributes, including area (addressed in Unit 4), and perimeter (explored here), as well as classification of shapes based on attributes into one or more categories.

Students begin the unit by defining perimeter as the boundary of a two-dimensional shape and measure it by finding its length. For a polygon, the length of the perimeter is the sum of the lengths of the sides. They develop their understanding of perimeter by measuring it with a ruler, finding it when all side lengths are labeled, and then finding it when some information about the length of a shape’s side lengths needs to be deduced, such as when a rectangle only has its length and width labeled. Students then solve real-world and mathematical problems, both given a figure and without one, involving perimeters of polygons (3.MD.8). With this understanding of perimeter, they are able to compare the measurement of area and perimeter of a rectangle, seeing that a rectangle with a certain area can have a variety of perimeters and, conversely, a rectangle with a certain perimeter can have a variety of areas, connecting the additional cluster content of perimeter to the major cluster content of area. Students then solve various problems involving area and perimeter. The last topic of the unit explores geometry. Students build on Grade 2 ideas about polygons and their properties, specifically developing and expanding their knowledge of quadrilaterals. They explore the attributes of quadrilaterals and classify examples into various categories (3.G.1), then explore attributes of polygons and classify examples into various categories, now including quadrilaterals. Students also draw polygons based on their attributes. Students next use tetrominoes and tangrams to compose and decompose shapes.

In this unit, students reason abstractly and quantitatively, translating back and forth between figures and equations in the context of perimeter problems (MP.2). Students will also construct viable arguments and critique the reasoning of others as they develop a nuanced understanding of the difference between area and perimeter, as well as when they classify shapes according to their attributes and justify their rationale (MP.3). Lastly, students will use appropriate tools strategically by using rulers to measure the side lengths of polygons to find their perimeter, as well as use rulers and right angle templates to find attributes of shapes to determine their classification (MP.5).

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 3 Unit 6: Fractions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In Unit 6, students extend and deepen Grade 1 work with understanding halves and fourths/quarters (1.G.3) as well as Grade 2 practice with equal shares of halves, thirds, and fourths (2.G.3) to understanding fractions as equal partitions of a whole. Their knowledge becomes more formal as they work with area models and the number line. Throughout the module, students have multiple experiences working with the Grade 3 specified fractional units of halves, thirds, fourths, sixths, and eighths. To build flexible thinking about fractions, students are exposed to additional fractional units such as fifths, ninths, and tenths.

This unit affords ample opportunity for students to engage with the Standards for Mathematical Practice. Students will develop an extensive toolbox of ways to model fractions, including area models, tape diagrams, and number lines (MP.5), choosing one model over another to represent a problem based on its inherent advantages and disadvantages. Students construct viable arguments and critique the reasoning of others as they explain why fractions are equivalent and justify their conclusions of a comparison with a visual fraction model (MP.3). They attend to precision as they come to more deeply understand what is meant by equal parts, and being sure to specify the whole when discussing equivalence and comparison (MP.6). Lastly, in the context of line plots, “measuring and recording data require attention to precision (MP.6)” (MD Progression, p. 3).

Unfortunately, “the topic of fractions is where students often give up trying to understand mathematics and instead resort to rules” (Van de Walle, p. 203). Thus, this unit places a strong emphasis on developing conceptual understanding of fractions, using the number line to represent fractions and to aid in students' understanding of fractions as numbers. With this strong foundation, students will operate on fractions in Grades 4 and 5 (4.NF.3—4, 5.NF.1—7) and apply this understanding in a variety of contexts, such as proportional reasoning in middle school and interpreting functions in high school, among many others.

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 3 Unit 7: Measurement
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In Unit 7, students solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects. The unit, while major work itself, also “support[s] the Grade 3 emphasis on multiplication and the mathematical practices of making sense of problems (MP.1) and representing them with equations, drawings, or diagrams (MP.4)” (GM Progression, p. 18).

Students begin by building on their understanding of telling time to the nearest five minutes from Grade 2 (2.MD.7) to tell and write time to the nearest minute using analog and digital clocks (3.MD.1). Students see that an analog clock is a portion of the number line shaped into a circle. Just as students used a number line to represent sums and differences in Grade 2 (2.MD.6), students use the number line to represent addition and subtraction problems involving elapsed time in minutes and durations of time (3.MD.1).

Building on the estimation skills with length gained in Grade 2 (2.MD.3), students in Grade 3 use the metric units of kilograms, grams, liters, and milliliters to estimate the masses and liquid volumes of familiar objects (3.MD.2). Students also measure objects in those units, reading the measurement scales on analog tools such as beakers. Finally, just as students solved word problems involving lengths in Grade 2 (2.MD.5), students solve word problems involving masses or volumes given in the same metric units (3.MD.2).

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 4 Unit 1: Place Value, Rounding, Addition, and Subtraction
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In the first unit for Grade 4, students extend their work with whole numbers and use this generalized understanding of the place value system in the context of comparing numbers, rounding them, and adding and subtracting them.

Students understanding of the base ten system begins as early as Kindergarten, when students learn to decompose teen numbers as ten ones and some ones (K.NBT.1). This understanding continues to develop in Grade 1, when students learn that ten is a unit and therefore decompose teen numbers into one ten (as opposed to ten ones) and some ones and learn that the decade numbers can be referred to as some tens (1.NBT.1). Students also start to compare two-digit numbers (1.NBT.2) and add and subtract within 100 based on place value (1.NBT.3—5). In second grade, students generalize the place value system even further, understanding one hundred as a unit (2.NBT.1) and comparing, adding, and subtracting numbers within 1,000 (2.NBT.2—9). In Grade 3, place value (NBT) standards are additional cluster content, but they still spend time fluently adding and subtracting within 1,000 and rounding three-digit numbers to the nearest 10 and 100 (3.NBT.1—2).

Thus, because students did not focus heavily on place value in Grade 3, Unit 1 begins with where things left off in Grade 2 of understanding numbers within 1,000. Students get a sense of the magnitude of each place value by visually representing the place values they are already familiar with and building from there. Once students have a visual and conceptual sense of the “ten times greater” property, they are able to articulate why a digit in any place represents 10 times as much as it represents in the place to its right (4.NBT.1). Next, students write multi-digit numbers in various forms and compare them (4.NBT.2). Comparison leads directly into rounding, where Grade 4 students learn to round to any place value (4.NBT.3). Next, students use the standard algorithms for addition and subtraction with multi-digit numbers (4.NBT.4) and apply their algorithmic knowledge to solve word problems. The unit culminates with multi-step word problems involving addition and subtraction, using a letter to represent the unknown quantity, then using rounding to assess the reasonableness of their answer (4.OA.3), allowing for students to connect content across different clusters and domains (4.NBT.A, 4.NBT.B, and 4.OA.B).

Throughout the unit, students will repeatedly look for and make use of structure, specifically the structure of the place value system (MP.7). Students develop an understanding that a digit in any place represents 10 times as much as it represents in the place to its right, then apply that understanding of structure to compare, round, and add and subtract multi-digit whole numbers

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 4 Unit 2: Multi-Digit Multiplication
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In Grade 4 Unit 2, students multiply up to four-digit numbers by one-digit numbers, relying on their understanding of place value and properties of operations, as well as visual models like an area model, to solve.

As a foundation for their multi-year work with multiplication and division, students in Grade 2 learned to partition a rectangle into rows and columns and write a repeated addition sentence to determine the total. They also skip-counted by 5s, 10s, and 100s. Then, in Grade 3, students developed a conceptual understanding of multiplication and division in relation to equal groups, arrays, and area. They developed a variety of strategies to build toward fluency with multiplication and division within 100 and applied that knowledge to the context of one- and two-step problems using the four operations.

To begin the unit, students extend their understanding of multiplication situations that they learned in Grade 3 to include multiplicative comparison using the words “times as many.” Next, to continue to refresh students’ work in Grades 2 and 3 on skip-counting and basic multiplication facts and extend it further to values they have not yet worked with, students investigate factors and multiples within 100, as well as prime and composite numbers (4.OA.4). Thus, this supporting cluster content serves as a foundation for the major work with multiplication and division with larger quantities. Tangentially, it will also support the major work in Unit 5 to recognize and generate equivalent fractions. Then, students move into two-digit by one-digit, three-digit by one-digit, four-digit by one-digit, and two-digit by two-digit multiplication, using the area model, partial products, and finally the standard algorithm, making connections between all representations as they go. The use of the area model serves to help students conceptually understand multiplication and as a connection to their work with area and perimeter (4.MD.3), a supporting cluster standard. Finally, with a full understanding of all multiplication cases, they then apply their new multiplication skills to solve multi-step word problems using multiplication, addition, and subtraction, including cases involving multiplicative comparison (4.NBT.5, 4.OA.3, 4.MD.3), allowing for many opportunities to connect content across multiple domains.

This unit affords lots of opportunities to deepen students’ mathematical practices. For example, “when students decompose numbers into sums of multiples of base-ten units to multiply them, they are seeing and making use of structure (MP.7). Students “reason repeatedly (MP.8) about the connection between math drawings and written numerical work, students can come to see multiplication and division algorithms as abbreviations or summaries of their reasoning about quantities” (NBT Progression, p. 14). Lastly, as students solve multi-step word problems involving addition, subtraction, and multiplication, they are modeling with mathematics (MP.4).

Students’ work in this unit will prepare them for fluency with the multiplication algorithm in Grade 5 (5.NBT.5). Students also learn about new applications of multiplication in future grades, including scaling quantities up and down in Grade 5 (5.NF.5), all the way up to rates and slopes in the middle grades (6.RP, 7.RP). Every subsequent grade level depends on the understanding of multiplication and its algorithm, making this unit an important one for students in Grade 4.

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 4 Unit 3: Multi-Digit Division
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this unit, students explore the concept of multi-digit division and its applications, such as interpreting a remainder in division word problems and using division to determine the nth term in a repeating shape pattern.

Students developed a foundational understanding of division in Grade 3, when they came to understand division in relation to equal groups, arrays, and area. They developed a variety of strategies to build towards fluency with division within 100, and they applied that knowledge to the context of one- and two-step problems using the four operations. Students also came to understand the distributive property, which underpins the standard algorithm for division.

Just as at the beginning of the previous unit when students expanded their understanding of multiplication beyond Grade 3 understanding to include multiplicative comparison word problems, this unit starts off with the added complexity of division problems with remainders (4.OA.3). This is likely familiar to students from their own real-world experiences of trying to split quantities evenly, and thus the focus is on interpretation of those remainders in the context of various problems. Next, students focus on extending their procedural skill with division to include up to four-digit dividends with one-digit divisors (4.NBT.6), representing these cases with base ten blocks, the area model, partial quotients, and finally the standard algorithm, making connections between all representations as they go. The use of the area model serves to help students conceptually understand division, and as a connection to their work with area and perimeter (4.MD.3), a supporting cluster standard. Lastly, armed with a deep understanding of all four operations spanned over the last three units, students solve multi-step problems involving addition, subtraction, multiplication, and division, including their new problem situations such as multiplicative comparison and interpreting remainders (4.OA.3). They also explore number and shape patterns, using the four operations to draw conclusions about them (4.OA.5).

Throughout the unit, students are engaging with the mathematical practices in various ways. For example, students are seeing and making use of structure (MP.7) as they “decompos[e] the dividend into like base-ten units and find the quotient unit by unit” (NBT Progressions, p. 16). Further, "by reasoning repeatedly (MP.8) about the connection between math drawings and written numerical work, students can come to see multiplication and division algorithms as abbreviations or summaries of their reasoning about quantities” (NBT Progression, p. 14). Lastly, as students solve multi-step word problems involving addition, subtraction, and multiplication, they are modeling with mathematics (MP.4).

While students are encouraged throughout the unit to use models when appropriate to solve problems, their in-depth experience with the place value system and multiple conceptual models and exposure to the division algorithms prepares them for extending these models to two-digit divisors in Grade 5 (5.NBT.6) and to fluency with the division algorithm in Grade 6 (6.NS.2). Every subsequent grade level depends on the understanding of multi-digit division and its algorithms, making this unit an important one for students in Grade 4.

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 4 Unit 4: Shapes and Angles
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Unit 4 in Grade 4 introduces students to the more abstract geometric concepts of points, lines, line segments, rays, and angles. Students learn to measure angles and then use this skill to classify shapes based on their angle measure, a geometric property. Students also develop an understanding of reflectional symmetry, identifying line-symmetric shapes and drawing their lines of symmetry.

This unit builds on lots of work in prior grades with shape recognition and categorization (1.G.1, 2.G.1, 3.G.1). In order to differentiate a square from a rhombus, students must attend to the angle measure of the corners, or vertices. Thus, this unit introduces students to the vocabulary that will allow them to talk about angle measure as an attribute of plane figures (both polygons and more abstract figures, such as sets of intersecting lines), as well as the measurement system used to quantify angle measure precisely.

The unit begins with students drawing points, lines, line segments, rays, and angles, and continues to general classifications based on angles, including distinguishing between right, obtuse, acute, and straight angles as well as parallel, perpendicular, and intersecting lines. Then, students develop a more precise idea of angles as geometric figures that can be measured, and learn to do so. Students also learn to think of angles not just as objects but as actions—they can indicate a turn or change in direction. Students also see that angles are additive, just like other geometric measures they’ve explored in prior grades, such as length in Grade 2 (2.MD.1—6) and area in Grade 3 (3.MD.5—7). Next, students use their deepened understanding of angles to classify and draw triangles according to their angle measure (right, obtuse, and acute) as well as side length (equilateral, isosceles, and scalene) and quadrilaterals according to the parallel and/or perpendicular nature of their sides. Lastly, students explore lines of symmetry, finding and drawing them in figures.

This unit allows for particular focus on MP.2, MP.5 and MP.6. For example, when students are “shown two sets of shapes and asked where a new shape belongs,” they are reasoning abstractly and quantitatively (MP.2) (G Progression, p. 16). Students also learn to use a new tool, the protractor, precisely, ensuring they line up the vertex and base correctly and read the angle measure carefully (MP.5, MP.6).

This work continues to formalize much of the work students have already done in understanding geometric figures, which will continue to formalize in coming years. This unit prepares students to hierarchically classify two-dimensional figures in Grade 5 (5.G.3, 5.G.4). It also introduces students to drawing geometric figures, which they will see again in Grade 7 (7.G.1—3) and even high school Geometry and the trigonometric aspects of Algebra II. Thus, while all of the standards addressed in the unit are additional cluster standards, they lay an important foundation for geometric work in years to come.

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 4 Unit 5: Fraction Equivalence and Ordering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this unit, students develop general methods and strategies to recognize and generate equivalent fractions as well as to compare and order fractions.

Thus, students begin this unit where they left off in Grade 3, extending their understanding of and strategies to recognize and generate equivalent fractions. Students use area models, tape diagrams, and number lines to understand and justify why two fractions a/b and (n×a)/(n×b) are equivalent, and they use those representations as well as multiplication and division to recognize and generate equivalent fractions. Next, they compare fractions with different numerators and different denominators. They may do this by finding common numerators or common denominators. They may also compare fractions using benchmarks, such as “see[ing] that 7/8<13/12 because 7/8 is less than 1 (and is therefore to the left of 1) but 13/12 is greater than 1 (and is therefore to the right of 1)” (Progressions for the Common Core State Standards in Math, pp. 6–7).

Students engage with the practice standards in a variety of ways in this unit. For example, students construct viable arguments and critique the reasoning of others (MP.3) when they explain why a fraction a/b is equivalent to a fraction (n×a)/(n×b). Students use appropriate tools strategically (MP.5) when they choose from various models to solve problems. Lastly, students look for and make use of structure (MP.7) when considering how the number and sizes of parts of two equivalent fractions may differ even though the two fractions themselves are the same size.

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 4 Unit 6: Fraction Operations
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this unit, students begin their work with operating with fractions by understanding them as a sum of unit fractions or a product of a whole number and a unit fraction. Students will then add fractions with like denominators and multiply a whole number by any fraction. Students will apply this knowledge to word problems and line plots.

In Grade 3, students developed their understanding of the meaning of fractions, especially using the number line to make sense of fractions as numbers themselves. They also did some rudimentary work with equivalent fractions and comparison of fractions. In Grade 4 Unit 5, they deepened this understanding of equivalence and comparison, learning the fundamental property that “multiplying the numerator and denominator of a fraction by the same non-zero whole number results in a fraction that represents the same number as the original fraction” (NF Progression, p. 6).

Thus, in this unit, armed with a deep understanding of fractions and their value, students start to operate on them for the first time. The unit is structured so that students build their understanding of fraction operations gradually, first working with the simplest case where the total is a fraction less than 1, then the case where the total is a fraction between 1 and 2 (to understand regrouping when operating in simple cases), and finally the case where the total is a fraction greater than 2. With each of these numerical cases, they first develop an understanding of non-unit fractions as sums and multiples of unit fractions. Next, they learn to add and subtract fractions. And finally, they apply these understandings to complex cases, such as word problems or fraction addition involving fractions where one denominator is a divisor of the other, which helps prepare students for similar work with decimal fractions in Unit 7. After working with all three numerical cases in the context of fraction addition and subtraction, they work with fraction multiplication, learning strategies for multiplying a whole number by a fraction and a mixed number and using those skills in the context of word problems. Finally, students apply this unit’s work to the context of line plots. Students will solve problems by using information presented in line plots, requiring them to use their recently acquired skills of fraction addition, subtraction, and even multiplication, creating a contextual way for this supporting cluster content to support the major work of the grade. The unit provides lots of opportunity for students to reason abstractly and quantitatively (MP.2) and construct viable arguments and critique the reasoning of others (MP.3).

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 4 Unit 7: Decimal Fractions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Unit 7 introduces students to an entirely new category of number—decimals. Students will explore decimals and their relationship to fractions, seeing that tenths and hundredths are particularly important fractional units because they represent an extension of the place value system into a new kind of number called decimals. Thus, students expand their conception of what a “number” is to encompass this entirely new category, which they will rely on for the remainder of their mathematical education.

Students have previously encountered an example of needing to change their understanding of what a number is in Grade 3, when the term came to include fractions. Their Grade 3 understanding of fractions (3.NF.A), as well as their work with fractions so far this year (4.NF.A, 4.NF.B), will provide the foundation upon which decimal numbers, their equivalence to fractions, their comparison, and their addition will be built. Students also developed an understanding of money in Grade 2, working with quantities either less than one dollar or whole dollar amounts (2.MD.8). But with the knowledge acquired in this unit, students will be able to work with money represented as decimals, as it so often is.

Thus, students rely on their work with fractions to see the importance of a tenth as a fractional unit as an extension of the place value system in Topic A, then expand that understanding to hundredths in Topic B. Throughout Topics A and B, students convert between fraction, decimal, unit, and expanded forms to encourage these connections (4.NF.6). Then students learn to compare decimals in Topic C (4.NF.7) and add decimal fractions in Topic D (4.NF.5). Finally, students apply this decimal understanding to solve word problems, including those particularly related to money, at the end of the unit. Thus, the work with money (4.MD.2) supports the major work and main focus of the unit on decimals.

While students will have ample opportunities to engage with the standards for mathematical practice, they’ll rely heavily on looking for and making use of structure (MP.7), particularly the structure of the place value system. They will also construct viable arguments and critique the reasoning of others (MP.3) using various decimal fraction models to support their reasoning.

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 4 Unit 8: Unit Conversions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this unit, students relate multiplication, particularly their understanding of “times as many” developed throughout Grade 4, to the conversion of measurement units. Students will also solve word problems involving measurement and measurement conversion.

In previous grades, students have worked with many of the metric and customary units (2.MD.1—6, 3.MD.1—2). They’ve noticed the relationship between some units to help them understand various measurement benchmarks but have not yet done any unit conversions. Not only does this unit build on measurement work from previous grades, but it also relies on myriad skills and understanding developed throughout Grade 4. As the Progressions state, “relating units within the metric system is another opportunity to think about place value” (Progressions for the Common Core State Standards in Mathematics, K-5 Geometric Measurement, p. 20). Further, “students also combine competencies from different domains as they solve measurement problems using all four arithmetic operations, addition, subtraction, multiplication, and division” (Progressions for the Common Core State Standards in Mathematics, K-5 Geometric Measurement, p. 20). Lastly, as directly stated in the language of 4.MD.2, students will convert units and solve problems involving fraction and decimal numbers. Thus, while the unit focuses on supporting cluster standards, their instruction enhances much of the major work of the grade, including place value (4.NBT.A), arithmetic operations (4.NBT.B), word problems (4.OA.A), and fractions (including decimal fractions) (4.NF).

As NCTM’s position statement on the metric system states, “Students need to develop an understanding of metric units and their relationships, as well as fluency in applying the metric system to real-world situations. Because some non-metric units of measure are common in particular contexts, students need to develop familiarity with multiple systems of measure, including metric and customary systems and their relationships" (The Metric System, NCTM). Thus, students will explore both metric and customary systems of measurement, starting with unit conversions from larger to smaller metric units in Topic A, and then similarly with customary units in Topic B. Then, in Topic C, students deal with more complex cases of fractional and decimal unit conversions. At the end of each topic, students apply their new learning in the context of solving multi-step word problems involving unit conversions.

The unit provides rich opportunities for students to engage with the mathematical practice standards. As the Progressions state, “relating units within the traditional system provides an opportunity to engage in mathematical practices, especially ‘look for and make use of structure’ (MP.7) and ‘look for and express regularity in repeated reasoning’ (MP.8)” (Progressions for the Common Core State Standards in Mathematics, K-5 Geometric Measurement, p. 20). Further, when students solve word problems that involve unit conversions, they "may use tape or number line diagrams for solving such problems (MP.1)" (Progressions for the Common Core State Standards in Mathematics, K-5 Geometric Measurement, p. 20).

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 5 Unit 1: Place Value with Decimals
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In the first unit of Grade 5, students will build on their understanding of the structure of the place value system from Grade 4 (MP.7) by extending that understanding to decimals. By the end of the unit, students will have a deep understanding of the base-ten structure of our number system, as well as how to read, write, compare, and round those numbers.

In Grade 4, students developed the understanding that a digit in any place represents ten times as much as it represents in the place to its right (4.NBT.1). With this deepened understanding of the place value system, students read and wrote multi-digit whole numbers in various forms, compared them, and rounded them (4.NBT.2—3).

Thus, Unit 1 starts off with reinforcing some of this place value understanding of multi-digit whole numbers to 1 million, building up to that number by multiplying 10 by itself repeatedly. After this repeated multiplication, students are introduced to exponents to denote powers of 10. Then, students review the relationship in a whole number between a place value and the place to its left (4.NBT.1) and learn about the reciprocal relationship of a place value and the place to its right (5.NBT.1). Students also extend their work from Grade 4 on multiplying whole numbers by 10 to multiplying and dividing them by powers of 10 (5.NBT.2). After extensive practice with whole numbers, students then divide by 10 repeatedly to extend their place value system in the other direction, to decimals. They then apply these rules and perform these operations with powers of 10 to decimal numbers. Lastly, after deepening their understanding of the base-ten structure of our place value system, students read, write, compare, and round numbers in various forms (5.NBT.3—4).

As mentioned earlier, students will look for and make use of structure throughout the unit (MP.7). Students will also have an opportunity to look for and express regularity in repeated reasoning (MP.8), such as “when students explain patterns in the number of zeros of the product when multiplying a number by powers of 10 (5.NBT.2)” (PARCC Model Content Frameworks, p. 24).

This content represents the culmination of many years’ worth of work to deeply understand the structure of our place value system, starting all the way back in Kindergarten with the understanding of teen numbers as “10 ones and some ones” (K.NBT.1). Moving forward, students will rely on this knowledge later in the Grade 5 year to multiply and divide whole numbers (5.NBT.5—6) and perform all four operations with decimals (5.NBT.7). Students will also use their introduction to exponents to evaluate more complex expressions involving them (6.EE.1). Perhaps the most obvious future grade-level connection exists in Grade 8, when students will represent very large and very small numbers using scientific notation and perform operations on numbers written in scientific notation (8.EE.3—4). Thus, this unit represents an important conclusion to the underlying structure of our number system and opens the door to more complex mathematics with very large and very small numbers.

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017