Updating search results...

Search Resources

23 Results

View
Selected filters:
  • earthquake
Build Your Own Insect Trap
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design and construct devices to trap insects that are present in the area around the school. The objective is to ask the right design questions and conduct the right tests to determine if the traps work .

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Did You Feel It (Annual USGS Earthquake Summary Maps)
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

The Did You Feel It (DYFI) Annual Summary Webage and Viewer are resources that are ideal for Earth Science and Geography laboratiory activitiy.

Students may connect to a database of factual information collected by the USGS on Earthquakes and other seismic disturbances.

The data graphically shows the highest intensity felt at each location searched. The data is grouped into 10 km blocks, and the color of each block corresponds to the highest intensity calculated for that block (regardless of which event).

Subject:
Earth Resources
Earth and Space Systems
Geography
History/Social Sciences
Science
Material Type:
Activity/Lab
Date Added:
07/18/2019
Earthquake Formation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the structure of the earth and how an earthquake happens. In one activity, students make a model of the earth including all of its layers. In a teacher-led demonstration, students learn about continental drift. In another activity, students create models demonstrating the different types of faults.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Melissa Straten
Date Added:
09/18/2014
Earthquake in the Classroom
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers construct buildings to withstand damage from earthquakes by building their own structures with toothpicks and marshmallows. Students test how earthquake-proof their buildings are by testing them on an earthquake simulated in a pan of Jell-O(TM).

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
Earthquakes Living Lab: Designing for Disaster
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about factors that engineers take into consideration when designing buildings for earthquake-prone regions. Using online resources and simulations available through the Earthquakes Living Lab, students explore the consequences of subsurface ground type and building height on seismic destruction. Working in pairs, students think like engineers to apply what they have learned to sketches of their own building designs intended to withstand strong-magnitude earthquakes. A worksheet serves as a student guide for the activity.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Earthquakes Living Lab: FAQs about P Waves, S Waves and More
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn what causes earthquakes, how we measure and locate them, and their effects and consequences. Through the online Earthquakes Living Lab, student pairs explore various types of seismic waves and the differences between shear waves and compressional waves. They conduct research using the portion of the living lab that focuses primarily on the instruments, methods and data used to measure and locate earthquakes. Using real-time U.S. Geological Survey (USGS) data accessed through the living lab interface, students locate where earthquakes are occurring and how frequently. Students propose questions and analyze the real-world seismic data to find answers and form conclusions. They are asked to think critically about why earthquakes occur and how knowledge about earthquakes can be helpful to engineers. A worksheet serves as a student guide for the activity.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Earthquakes Living Lab: Finding Epicenters and Measuring Magnitudes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers characterize earthquakes through seismic data. Then, acting as engineers, they use real-world seismograph data and a tutorial/simulation accessed through the Earthquakes Living Lab to locate earthquake epicenters via triangulation and determine earthquake magnitudes. Student pairs examine seismic waves, S waves and P waves recorded on seismograms, measuring the key S-P interval. Students then determine the maximum S wave amplitudes in order to determine earthquake magnitude, a measure of the amount of energy released. Students consider how engineers might use and implement seismic data in their design work. A worksheet serves as a student guide for the activity.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Earthquakes Living Lab: Geology and Earthquakes in Japan
Read the Fine Print
Educational Use
Rating
0.0 stars

Students study how geology relates to the frequency of large-magnitude earthquakes in Japan. Using the online resources provided through the Earthquakes Living Lab, students investigate reasons why large earthquakes occur in this region, drawing conclusions from tectonic plate structures and the locations of fault lines. Working in pairs, students explore the 1995 Kobe earthquake, why it happened and the destruction it caused. Students also think like engineers to predict where other earthquakes are likely to occur and what precautions might be taken. A worksheet serves as a student guide for the activity.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Earthquakes Living Lab: Geology and the 1906 San Francisco Earthquake
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine the effects of geology on earthquake magnitudes and how engineers anticipate and prepare for these effects. Using information provided through the Earthquakes Living Lab interface, students investigate how geology, specifically soil type, can amplify the magnitude of earthquakes and their consequences. Students look in-depth at the historical 1906 San Francisco earthquake and its destruction thorough photographs and data. They compare the 1906 California earthquake to another historical earthquake in Kobe, Japan, looking at the geological differences and impacts in the two regions, and learning how engineers, geologists and seismologists work to predict earthquakes and minimize calamity. A worksheet serves as a student guide for the activity.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Earthquakes Living Lab: Locating Earthquakes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use U.S. Geological Survey (USGS) real-time, real-world seismic data from around the planet to identify where earthquakes occur and look for trends in earthquake activity. They explore where and why earthquakes occur, learning about faults and how they influence earthquakes. Looking at the interactive maps and the data, students use Microsoft® Excel® to conduct detailed analysis of the most-recent 25 earthquakes; they calculate mean, median, mode of the data set, as well as identify the minimum and maximum magnitudes. Students compare their predictions with the physical data, and look for trends to and patterns in the data. A worksheet serves as a student guide for the activity.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
05/16/2019
Earthquakes Living Lab: The Theory of Plate Tectonics
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gather evidence to explain the theory of plate tectonics. Using the online resources at the Earthquakes Living Lab, students examine information and gather evidence supporting the theory. They also look at how volcanoes and earthquakes are explained by tectonic plate movement, and how engineers use this information. Working in pairs, students think like engineers and connect what they understand about the theory of plate tectonics to the design of structures for earthquake-resistance. A worksheet serves as a student guide for the activity.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Earthquakes Rock!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the two main methods to measure earthquakes, the Richter Scale and the Mercalli Scale. They make a model of a seismograph a measuring device that records an earthquake on a seismogram. Students also investigate which structural designs are most likely to survive an earthquake. And, they illustrate an informational guide to the Mercalli Scale.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Melissa Straten
Date Added:
09/18/2014
Magnitude of the Richter Scale
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students will learn about the Richter Scale for measuring earthquakes. The students will make a booklet with drawings that represent each rating of the Richter Scale.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Melissa Straten
Date Added:
09/26/2008
Mercalli Scale Illustrated
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students will learn about the Mercalli Scale for rating earthquakes. Also, students will make a booklet with drawings that represent each rating of the scale.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
Natural Disasters
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to our planet's structure and its dynamic system of natural forces through an examination of the natural hazards of earthquakes, volcanoes, landslides, tsunamis, floods and tornados, as well as avalanches, fires, hurricanes and thunderstorms. They see how these natural events become disasters when they impact people, and how engineers help to make people safe from them. Students begin by learning about the structure of the Earth; they create clay models showing the Earth's layers, see a continental drift demo, calculate drift over time, and make fault models. They learn how earthquakes happen; they investigate the integrity of structural designs using model seismographs. Using toothpicks and mini-marshmallows, they create and test structures in a simulated earthquake on a tray of Jell-O. Students learn about the causes, composition and types of volcanoes, and watch and measure a class mock eruption demo, observing the phases that change a mountain's shape. Students learn that the different types of landslides are all are the result of gravity, friction and the materials involved. Using a small-scale model of a debris chute, they explore how landslides start in response to variables in material, slope and water content. Students learn about tsunamis, discovering what causes them and makes them so dangerous. Using a table-top-sized tsunami generator, they test how model structures of different material types fare in devastating waves. Students learn about the causes of floods, their benefits and potential for disaster. Using riverbed models made of clay in baking pans, students simulate the impact of different river volumes, floodplain terrain and levee designs in experimental trials. They learn about the basic characteristics, damage and occurrence of tornadoes, examining them closely by creating water vortices in soda bottles. They complete mock engineering analyses of tornado damage, analyze and graph US tornado damage data, and draw and present structure designs intended to withstand high winds.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
04/10/2009
Natural Frequency and Buildings
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about frequency and period, particularly natural frequency using springs. They learn that the natural frequency of a system depends on two things: the stiffness and mass of the system. Students see how the natural frequency of a structure plays a big role in the building surviving an earthquake or high winds.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jake Moravec
Date Added:
09/18/2014
Naturally Disastrous
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to natural disasters, and learn the difference between natural hazards and natural disasters. They discover the many types of natural hazards avalanche, earthquake, flood, forest fire, hurricane, landslide, thunderstorm, tornado, tsunami and volcano as well as specific examples of natural disasters. Students also explore why understanding these natural events is important to engineers and everyone's survival on our planet.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Geoffrey Hill
Malinda Schaefer Zarske
Date Added:
09/18/2014
Plate Tectonics
Unrestricted Use
CC BY
Rating
0.0 stars

Explore how plates move on the surface of the earth. Change temperature, composition, and thickness of plates. Discover how to create new mountains, volcanoes, or oceans!

Subject:
Mathematics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Emily Moore
Heather Houlton
Jonathan Olson
Kat Quigley
Kathy Perkins
Kevin Beals
Lauren Brodsky
Noah Podolefsky
Phaela Peck
Suzy Loper
Date Added:
08/20/2012
Save Our City!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about various natural hazards and specific methods engineers use to prevent these hazards from becoming natural disasters. They study a hypothetical map of an area covered with natural hazards and decide where to place natural disaster prevention devices by applying their critical thinking skills and an understanding of the causes of natural disasters.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Geoffrey Hill
Malinda Schaefer Zarske
Date Added:
09/26/2008
Seismic Waves: How Earthquakes Move the Earth
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the types of seismic waves produced by earthquakes and how they move the Earth. The dangers of earthquakes are presented as well as the necessity for engineers to design structures for earthquake-prone areas that are able to withstand the forces of seismic waves. Students learn how engineers build shake tables that simulate the ground motions of the Earth caused by seismic waves in order to test the seismic performance of buildings.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Denise W. Carlson
Stephanie Rivale
Date Added:
09/18/2014