Updating search results...

Search Resources

14 Results

View
Selected filters:
  • radius
Accelerometer: Centripetal Acceleration
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work as physicists to understand centripetal acceleration concepts. They also learn about a good robot design and the accelerometer sensor. They also learn about the relationship between centripetal acceleration and centripetal force governed by the radius between the motor and accelerometer and the amount of mass at the end of the robot's arm. Students graph and analyze data collected from an accelerometer, and learn to design robots with proper weight distribution across the robot for their robotic arms. Upon using a data logging program, they view their own data collected during the activity. By activity end , students understand how a change in radius or mass can affect the data obtained from the accelerometer through the plots generated from the data logging program. More specifically, students learn about the accuracy and precision of the accelerometer measurements from numerous trials.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carlo Yuvienco
Jennifer S. Haghpanah
Date Added:
09/18/2014
Angular Velocity: Sweet Wheels
Read the Fine Print
Educational Use
Rating
0.0 stars

Students analyze the relationship between wheel radius, linear velocity and angular velocity by using LEGO(TM) MINDSTORMS(TM) NXT robots. Given various robots with different wheel sizes and fixed motor speeds, they predict which has the fastest linear velocity. Then student teams collect and graph data to analyze the relationships between wheel size and linear velocity and find the angular velocity of the robot given its motor speed. Students explore other ways to increase linear velocity by changing motor speeds, and discuss and evaluate the optimal wheel size and desired linear velocities on vehicles.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Muldoon
Jigar Jadav
Kelly Brandon
Date Added:
10/14/2015
Art for Dessert | The Creative Corner
Unrestricted Use
CC BY
Rating
0.0 stars

Learn why artists have been featuring food as a subject in their work for centuries.  You’ve been told to eat your vegetables, but have you ever tried to paint them? Special Guest Lisa McLaughlin, the baker behind Jesse’s Girl Cookies, invites us into her kitchen to experiment with modern art techniques on cakes, and then we’ll make our own painting of a scrumptious treat inspired by 20th-Century painter Wayne Thiebaud.

Subject:
Career Connections
STEM/STEAM
Visual Art
Material Type:
Activity/Lab
Lesson
Visual Media
Author:
Trish Reed
Date Added:
05/27/2021
Diameter/Radius
Unrestricted Use
CC BY
Rating
0.0 stars

This is a google slides mini lesson on diameter and radius of a circle.  The first slide consists of a definition of a diameter and radius.  Students will discuss and realize the difference between the two.  Then they will make a text box for the answer.  They will type the answer in the text box, then complete the slides.

Subject:
Mathematics
Material Type:
Activity/Lab
Author:
Elsie Owens
Date Added:
06/07/2023
Discovering Relationships between Side Length and Area
Read the Fine Print
Educational Use
Rating
0.0 stars

Through this lesson and its two associated activities, students are introduced to the use of geometry in engineering design, and conclude by making scale models of objects of their choice. The practice of developing scale models is often used in engineering design to analyze the effectiveness of proposed design solutions. In this lesson, students complete fencing (square) and fire pit (circle) word problems on two worksheets—which involves side and radius dimensions, perimeters, circumferences and areas—guiding them to discover the relationships between the side length of a square and its area, and the radius of a circle and its area. They also think of real-world engineering applications of the geometry concepts.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Lesson
Provider:
TeachEngineering
Author:
Aaron Lamplugh
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Date Added:
05/16/2019
Gears: Determining Angular Velocity
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work as engineers and learn to conduct controlled experiments by changing one experimental variable at a time to study its effect on the experiment outcome. Specifically, they conduct experiments to determine the angular velocity for a gear train with varying gear ratios and lengths. Student groups assemble LEGO MINDSTORMS(TM) NXT robots with variously sized gears in a gear train and then design programs using the NXT software to cause the motor to rotate all the gears in the gear train. They use the LEGO data logging program and light sensors to set up experiments. They run the program with the motor and the light sensor at the same time and analyze the resulting plot in order to determine the angular velocity using the provided physics-based equations. Finally, students manipulate the gear train with different gears and different lengths in order to analyze all these factors and figure out which manipulation has a higher angular velocity. They use the equations for circumference of a circle and angular velocity; and convert units between radians and degrees.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Cox
Jasmin Mejias
Jennifer S. Haghpanah
Leonarda Huertas
Mihai Pruna
Date Added:
09/18/2014
Grade 5 Valentine Day Lesson
Unrestricted Use
CC BY
Rating
0.0 stars

This learning resource provides students insight into combining and subdividing figures as well as utilizing the understanding of quadrilaterals.  Along with the exploration, students will be developing critical thinking through the decisions that are made to create the final mathematical product.  They will also communicate through collaboration to produce a final mathematical product.  They will also develop creative thinking and citizenship by producing a written piece to show their caring and understanding nature.

Subject:
Mathematics
Writing
Material Type:
Lesson
Author:
Elizabeth Silva
Date Added:
07/14/2020
How Far Does the Robot Go?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students practice their multiplication skills using robots with wheels built from LEGO® MINDSTORMS® NXT kits. They brainstorm distance travelled by the robots without physically measuring distance and then apply their math skills to correctly calculate the distance and compare their guesses with physical measurements. Through this activity, students estimate parameters other than by physically measuring them, practice multiplication, develop measuring skills, and use their creativity to come up with successful solutions.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Elina Mamasheva
Keeshan Williams
Date Added:
09/18/2014
Let’s Build an Aqueduct!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore in detail how the Romans built aqueducts using arches—and the geometry involved in doing so. Building on what they learned in the associated lesson about how innovative Roman arches enabled the creation of magnificent structures such as aqueducts, students use trigonometry to complete worksheet problem calculations to determine semicircular arch construction details using trapezoidal-shaped and cube-shaped blocks. Then student groups use hot glue and half-inch wooden cube blocks to build model aqueducts, doing all the calculations to design and build the arches necessary to support a water-carrying channel over a three-foot span. They calculate the slope of the small-sized aqueduct based on what was typical for Roman aqueducts at the time, aiming to construct the ideal slope over a specified distance in order to achieve a water flow that is not spilling over or stagnant. They test their model aqueducts with water and then reflect on their performance.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Lauchlin Blue
Malinda Zarske
Nathan Coyle
Date Added:
05/16/2019
Let's Take a Slice of Pi
Read the Fine Print
Educational Use
Rating
0.0 stars

Working as a team, students discover that the value of pi (3.1415926...) is a constant and applies to all different sized circles. The team builds a basic robot and programs it to travel in a circular motion. A marker attached to the robot chassis draws a circle on the ground as the robot travels the programmed circular path. Students measure the circle's circumference and diameter and calculate pi by dividing the circumference by the diameter. They discover the pi and circumference relationship; the circumference of a circle divided by the diameter is the value of pi.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carole Chen
Michael Hernandez
Date Added:
09/18/2014
NASA eClips Launchpad:  Engineering Design to Support Scientific Discovery
Unrestricted Use
Public Domain
Rating
0.0 stars

Video Description:  Engineering design and technology development support scientific discovery. Learn about the roles engineers and scientists play when working together on NASA missions like the James Webb Space Telescope and how science and engineering take turns pushing each other to move exploration forward.  Video Length:  4:16.NASA eClipsTM is a suite of online student-centered, standards-based resources that support instruction by increasing STEM literacy in formal and nonformal settings.  These free digital and downloadable resources inform and engage students through NASA-inspired, real-world connections.NASA eClips Launchpad videos focus on NASA innovations and the technology that take us into the future.  These segments support project-based and problem-based learning experiences in science, mathematics, and career and technical education classrooms.

Subject:
Earth and Space Systems
STEM/STEAM
Science
Scientific and Engineering Practices
Material Type:
Visual Media
Author:
Betsy McAllister
Date Added:
03/31/2022
NASA eClips Launchpad: Life Cycle of a Star
Unrestricted Use
Public Domain
Rating
0.0 stars

Video Description:  Each of us is made from star stuff. But how are stars formed? Take a closer look at the life cycles of stars and learn where stars come from, how they change, and what happens to stars when their lives come to an end. Find out about your connection to the cosmos.  Video Length:  6:00.NASA eClipsTM is a suite of online student-centered, standards-based resources that support instruction by increasing STEM literacy in formal and nonformal settings.  These free digital and downloadable resources inform and engage students through NASA-inspired, real-world connections.NASA eClips Launchpad videos focus on NASA innovations and the technology that take us into the future.  These segments support project-based and problem-based learning experiences in science, mathematics, and career and technical education classrooms.

Subject:
Earth and Space Systems
STEM/STEAM
Science
Material Type:
Visual Media
Author:
Betsy McAllister
Date Added:
03/31/2022
Scale Model Project
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build scale models of objects of their choice. In class they measure the original object and pick a scale, deciding either to scale it up or scale it down. Then they create the models at home. Students give two presentations along the way, one after their calculations are done, and another after the models are completed. They learn how engineers use scale models in their designs of structures, products and systems. Two student worksheets as well as rubrics for project and presentation expectations and grading are provided.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Aaron Lamplugh
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Date Added:
05/16/2019
So What Is the Density?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students review what they know about the 20 major bones in the human body (names, shapes, functions, locations, as learned in the associated lesson) and the concept of density (mass per unit of volume). Then student pairs calculate the densities for different bones from a disarticulated human skeleton model of fabricated bones, making measurements via triple-beam balance (for mass) and water displacement (for volume). All groups share their results with the class in order to collectively determine the densities for every major bone in the body. This activity prepares students for the next activity, "Can It Support You? No Bones about It," during which they act as biomedical engineers and design artificial bones, which requires them to find materials of suitable density to perform as human body implants.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeanne Hubelbank
Kristen Billiar
Michelle Gallagher
Terri Camesano
Date Added:
10/14/2015