Updating search results...

Search Resources

26 Results

View
Selected filters:
  • electricity-and-magnetism
Cake by Conduction
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this demonstration, cook a cake using the heat produced when the cake batter conducts an electric current. Because of safety concerns, this activity should be conducted as a demonstration only and learners should be kept at a safe distance.

Subject:
Matter
Science
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Don Rathjen
Date Added:
10/31/2005
Concord Consortium: Chemical Bonds
Read the Fine Print
Educational Use
Rating
0.0 stars

This interactive activity helps learners visualize the role of electrons in the formation of ionic and covalent chemical bonds. Students explore different types of chemical bonds by first viewing a single hydrogen atom in an electric field model. Next, students use sliders to change the electronegativity between two atoms -- a model to help them understand why some atoms are attracted. Finally, students experiment in making their own models: non-polar covalent, polar covalent, and ionic bonds. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Science
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
05/16/2011
Concord Consortium: Electric Current
Read the Fine Print
Educational Use
Rating
0.0 stars

This 90-minute activity features six interactive molecular models to explore the relationships among voltage, current, and resistance. Students start at the atomic level to explore how voltage and resistance affect the flow of electrons. Next, they use a model to investigate how temperature can affect conductivity and resistivity. Finally, they explore how electricity can be converted to other forms of energy. The activity was developed for introductory physics courses, but the first half could be appropriate for physical science and Physics First. The formula for Ohm's Law is introduced, but calculations are not required. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Concord Consortium develops deeply digital learning innovations for science, mathematics, and engineering.

Subject:
Science
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
03/10/2013
Concord Consortium: Solar Oven
Read the Fine Print
Educational Use
Rating
0.0 stars

Elementary grade students investigate heat transfer in this activity to design and build a solar oven, then test its effectiveness using a temperature sensor. It blends the hands-on activity with digital graphing tools that allow kids to easily plot and share their data. Included in the package are illustrated procedures and extension activities. Note Requirements: This lesson requires a "VernierGo" temperature sensing device, available for ~ $40. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Consortium develops digital learning innovations for science, mathematics, and engineering.

Subject:
Science
Material Type:
Activity/Lab
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
04/02/2013
Do All Types of Lights Follow Ohm's Law?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this physics lab students will investigate whether Ohm's Law applies to common electric devices (incandescent light bulbs and LEDs). This activity is based on a PRISMS activity.

Subject:
Force/Motion/Energy
Science
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Ann Markegard
Date Added:
05/29/2019
Electrical Circuits
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this module, the students will be able to explain (using physical models and computer simulations) the components of electrical circuits, the purpose of each component, and the differences between series and parallel circuits.This module was developed by Christina Owens as part of a Virginia Commonwealth University STEM initiative sponsored by the Virginia Department of Education.

Subject:
Force/Motion/Energy
STEM/STEAM
Science
Material Type:
Lesson Plan
Author:
VCU STEM Project 2
VCU STEM Project 1
VCU STEM Project 3
Date Added:
09/24/2020
Electroplating
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this electrochemistry activity, learners will explore two examples of electroplating. In Part 1, zinc from a galvanized nail (an iron nail which has been coated with zinc by dipping it in molten zinc) will be plated onto a copper penny. In Part 2, copper from a penny will be plated onto a nickel.

Subject:
Matter
Science
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Don Rathjen
Date Added:
11/07/2004
Electrostatic Water Attraction
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, learners conduct a simple experiment to see how electrically charged things like plastic attract electrically neutral things like water. The plastic will attract the surface of the water into a visible bump.

Subject:
Force/Motion/Energy
Science
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Paul Doherty
Date Added:
11/07/2000
Electrostatics
Read the Fine Print
Educational Use
Rating
0.0 stars

Use a series of interactive models and games to explore electrostatics. Learn about the effects positive and negative charges have on one another, and investigate these effects further through games. Learn about Coulomb's law and the concept that both the distance between the charges and the difference in the charges affect the strength of the force. Explore polarization at an atomic level, and learn how a material that does not hold any net charge can be attracted to a charged object. Students will be able to:

Subject:
Science
Material Type:
Activity/Lab
Data Set
Game
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/13/2011
Greenhouse Gases
Read the Fine Print
Educational Use
Rating
0.0 stars

Explore how the Earth's atmosphere affects the energy balance between incoming and outgoing radiation. Using an interactive model, adjust realistic parameters such as how many clouds are present or how much carbon dioxide is in the air, and watch how these factors affect the global temperature.

Subject:
Science
Material Type:
Activity/Lab
Data Set
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/13/2011
Heat and Light from Electricity
Read the Fine Print
Educational Use
Rating
0.0 stars

Discover how electricity can be converted into other forms of energy such as light and heat. Connect resistors and holiday light bulbs to simple circuits and monitor the temperature over time. Investigate the differences in temperature between the circuit with the resistor and the circuit using the bulb.

Subject:
Science
Material Type:
Activity/Lab
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/12/2011
How Electrons Move
Read the Fine Print
Educational Use
Rating
0.0 stars

Being able to control the movement of electrons is fundamental for making all electronic devices work. Discover how electric and magnetic fields can be used to move electrons around. Begin by exploring the relationship between electric forces and charges with vectors. Then, learn about electron fields. Finally, test your knowledge in a fun "Electron Shooting" game!

Subject:
Science
Material Type:
Activity/Lab
Data Set
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Investigating Batteries: Building an Electrolytic Cell
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is an inquiry where students will design an electrolytic cell that produces work in the form of lighting a bulb.

Subject:
Force/Motion/Energy
Matter
Science
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Carolyn Fruin
Date Added:
05/29/2019
Kosher Dill Current
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an activity that demonstrates how batteries work using simple household materials. Learners use a pickle, aluminum foil and a pencil to create an electrical circuit that powers a buzzer. Most common batteries--such as car batteries and the batteries inside a flashlight--work on the same principle that the pickle battery works on: two metals suspended in an ion-rich liquid or paste separate an electric charge, creating an electrical current around a circuit. In this activity, the pickle provides the ion-rich liquid - pickles contain salt water, which is rich in ions.

Subject:
CTE
Technology Education
Material Type:
Activity/Lab
Provider:
Exploratorium
Date Added:
06/04/2019
Laser Lissajous
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, learners use a laser pointer and two small rotating mirrors to create a variety of fascinating patterns, which can be easily and dramatically projected on a wall or screen. In this version of the activity, learners use binder clips to build the base of the device. Educators can use a pre-assembled device for demonstration purposes or engage learners in the building process.

Subject:
Force/Motion/Energy
Science
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Don Rathjen
Date Added:
11/07/2006
Molecular Self-Assembly
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students interact with 12 models to observe emergent phenomena as molecules assemble themselves. Investigate the factors that are important to self-assembly, including shape and polarity. Try to assemble a monolayer by "pushing" the molecules to the substrate (it's not easy!). Rotate complex molecules to view their structure. Finally, create your own nanostructures by selecting molecules, adding charges to them, and observing the results of self-assembly.

Subject:
Science
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Piezoelectric One-Way Remote
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, learners construct a device out of a piezoelectric igniter, like those used as barbecue lighters. Learners use the device to remotely start current flowing in a simple series circuit containing a small electric fan.

Subject:
CTE
Technology Education
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Don Rathjen
Date Added:
10/31/2004
Quantum Tunneling
Read the Fine Print
Educational Use
Rating
0.0 stars

Delve into a microscopic world working with models that show how electron waves can tunnel through certain types of barriers. Learn about the novel devices and apparatuses that have been invented using this concept. Discover how tunneling makes it possible for computers to run faster and for scientists to look more deeply into the microscopic world.

Subject:
Science
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Scanning Tunneling Microscopy
Read the Fine Print
Educational Use
Rating
0.0 stars

Use a virtual scanning tunneling microscope (STM) to observe electron behavior in an atomic-scale world. Walk through the principles of this technology step-by-step. First learn how the STM works. Then try it yourself! Use a virtual STM to manipulate individual atoms by scanning for, picking up, and moving electrons. Finally, explore the advantages and disadvantages of the two modes of an STM: the constant-height mode and the constant-current mode.

Subject:
Science
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011