Updating search results...

Search Resources

22 Results

View
Selected filters:
  • triangle
6.7 Area, Perimeter, Circumference
Unrestricted Use
CC BY
Rating
0.0 stars

 The student will complete a task where they are given 50 feet of fencing.  They have to design the largest area of garden using all of the fencing.  Students must explore circles, right triangles, and rectangles.  Students will be using the formulas of area and perimeter and circumference to calculate perimeter and area.     This task was created with Jamboard to allow students to collaborate together in person or remotely, in real time, as well as allowing the teacher to view students' work in progress.   The initial slide presents the task and provides the formulas for each shape’s area and perimeter.  The subsequent slides provide workspace for students’ thinking and collaboration.  The last slide is a conclusion slide.  Here students tell which shape they chose, give the measurements, and justification

Subject:
Mathematics
Material Type:
Activity/Lab
Author:
Melody Oquinn
Date Added:
04/06/2021
Design and Fly a Kite
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how to use wind energy to combat gravity and create lift by creating their own tetrahedral kites capable of flying. They explore different tetrahedron kite designs, learning that the geometry of the tetrahedron shape lends itself well to kites and wings because of its advantageous strength-to-weight ratio. Then they design their own kites using drinking straws, string, lightweight paper/plastic and glue/tape. Student teams experience the full engineering design cycle as if they are aeronautical engineers—they determine the project constraints, research the problem, brainstorm ideas, select a promising design and build a prototype; then they test and redesign to achieve a successful flying kite. Pre/post quizzes and a worksheet are provided.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joshua T. Claypool
Date Added:
05/16/2019
Engineering Your Own Spectrograph
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use simple materials to design an open spectrograph so they can calculate the angle light is bent when it passes through a holographic diffraction grating. A holographic diffraction grating acts like a prism, showing the visual components of light. After finding the desired angles, students use what they have learned to design their own spectrograph enclosure.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Fence That Farmland!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students develop and solidify their understanding of the concept of "perimeter" as they engage in a portion of the civil engineering task of land surveying. Specifically, they measure and calculate the perimeter of a fenced in area of "farmland," and see that this length is equivalent to the minimum required length of a fence to enclose it. Doing this for variously shaped areas confirms that the perimeter is the minimal length of fence required to enclose those shapes. Then students use the technology of a LEGO MINDSTORMS(TM) NXT robot to automate this task. After measuring the perimeter (and thus required fence length) of the "farmland," students see the NXT robot travel around this length, just as a surveyor might travel around an area during the course of surveying land or measuring for fence materials. While practicing their problem solving and measurement skills, students learn and reinforce their scientific and geometric vocabulary.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ursula Koniges
Date Added:
09/18/2014
Fence That Farmland! - Remix
Unrestricted Use
CC BY
Rating
0.0 stars

Students develop and solidify their understanding of the concept of "perimeter" as they engage in a portion of the civil engineering task of land surveying. Specifically, they measure and calculate the perimeter of a fenced in area of "farmland," and see that this length is equivalent to the minimum required length of a fence to enclose it. Doing this for variously shaped areas confirms that the perimeter is the minimal length of fence required to enclose those shapes. Then students use the technology of a LEGO MINDSTORMS(TM) NXT robot to automate this task. After measuring the perimeter (and thus required fence length) of the "farmland," students see the NXT robot travel around this length, just as a surveyor might travel around an area during the course of surveying land or measuring for fence materials. While practicing their problem solving and measurement skills, students learn and reinforce their scientific and geometric vocabulary.

Subject:
Measurement and Geometry
Material Type:
Activity/Lab
Author:
Laura Brown
Date Added:
07/01/2020
Launch into Learning: Catapults!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about catapults, including the science and math concepts behind them, as they prepare for the associated activity in which they design, build and test their own catapults. They learn about force, accuracy, precision and angles.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Jake Crosby
Jonathan McNeil
Malinda Schaefer Zarske
William Surles
Date Added:
09/18/2014
Let’s Build an Aqueduct!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore in detail how the Romans built aqueducts using arches—and the geometry involved in doing so. Building on what they learned in the associated lesson about how innovative Roman arches enabled the creation of magnificent structures such as aqueducts, students use trigonometry to complete worksheet problem calculations to determine semicircular arch construction details using trapezoidal-shaped and cube-shaped blocks. Then student groups use hot glue and half-inch wooden cube blocks to build model aqueducts, doing all the calculations to design and build the arches necessary to support a water-carrying channel over a three-foot span. They calculate the slope of the small-sized aqueduct based on what was typical for Roman aqueducts at the time, aiming to construct the ideal slope over a specified distance in order to achieve a water flow that is not spilling over or stagnant. They test their model aqueducts with water and then reflect on their performance.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Lauchlin Blue
Malinda Zarske
Nathan Coyle
Date Added:
05/16/2019
Olympic Engineering
Read the Fine Print
Educational Use
Rating
0.0 stars

The lesson begins by introducing Olympics as the unit theme. The purpose of this lesson is to introduce students to the techniques of engineering problem solving. Specific techniques covered in the lesson include brainstorming and the engineering design process. The importance of thinking out of the box is also stressed to show that while some tasks seem impossible, they can be done. This introduction includes a discussion of the engineering required to build grand, often complex, Olympic event centers.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Denali Lander
Janet Yowell
Katherine Beggs
Melissa Straten
Tod Sullivan
Date Added:
09/18/2014
Perimeter of Triangles
Unrestricted Use
CC BY
Rating
0.0 stars

This lesson is a Jamboard on perimeter of triangles. Students will use the Desmos calculator to compute the problems. Also, students will use the formula sheet.

Subject:
Mathematics
Material Type:
Activity/Lab
Homework/Assignment
Author:
Elsie Owens
Date Added:
05/04/2022
Polygons, Angles and Trusses, Oh My!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students take a close look at truss structures, the geometric shapes that compose them, and the many variations seen in bridge designs in use every day. Through a guided worksheet, students draw assorted 2D and 3D polygon shapes and think through their forms and interior angles (mental “testing”) before and after load conditions are applied. They see how engineers add structural members to polygon shapes to support them under compression and tension, and how triangles provide the strongest elemental shape. A PowerPoint® presentation is provided. This lesson prepares students for two associated activities that continue the series on polygons and trusses.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Lesson
Provider:
TeachEngineering
Author:
Andi Vicksman
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Sabina Schill
Date Added:
05/16/2019
Polygons and Popsicle Trusses
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the role engineers play in designing and building truss structures. Simulating a real-world civil engineering challenge, student teams are tasked to create strong and unique truss structures for a local bridge. They design to address project constraints, including the requirement to incorporate three different polygon shapes, and follow the steps of the engineering design process. They use hot glue and Popsicle sticks to create their small-size bridge prototypes. After compressive load tests, they evaluate their results and redesign for improvement. They collect, graph and analyze before/after measurements of interior angles to investigate shape deformation. A PowerPoint® presentation, design worksheet and data collection sheet are provided. This activity is the final step in a series on polygons and trusses.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Andi Vicksman
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Sabina Schill
Date Added:
05/16/2019
Right on Target: Catapult Game
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experience the engineering design process as they design and build accurate and precise catapults using common materials. They use their catapults to participate in a game in which they launch Ping-Pong balls to attempt to hit various targets.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Jake Crosby
Jonathan McNeil
Malinda Schaefer Zarske
William Surles
Date Added:
09/18/2014
Shapes Relay
Unrestricted Use
Public Domain
Rating
0.0 stars

Students will identify and sort plane figures (circle, rectangle, square, and triangle).

Subject:
Mathematics
Material Type:
Lesson
Author:
Sheila Hess
Date Added:
05/20/2022
Stay in Shape
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn that math is important in navigation and engineering. They learn about triangles and how they can help determine distances. Ancient land and sea navigators started with the most basic of navigation equations (speed x time = distance). Today, navigational satellites use equations that take into account the relative effects of space and time. However, even these high-tech wonders cannot be built without pure and simple math concepts — basic geometry and trigonometry — that have been used for thousands of years.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jeff White
Malinda Schaefer Zarske
Matt Lippis
Penny Axelrad
Date Added:
10/14/2015
Straw Bridges
Read the Fine Print
Educational Use
Rating
0.0 stars

Working as engineering teams, students design and create model beam bridges using plastic drinking straws and tape as their construction materials. Their goal is to build the strongest bridge with a truss pattern of their own design, while meeting the design criteria and constraints. They experiment with different geometric shapes and determine how shapes affect the strength of materials. Let the competition begin!

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Valenti
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Triangles Everywhere: Sum of Angles in Polygons
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about regular polygons and the common characteristics of regular polygons. They relate their mathematical knowledge of these shapes to the presence of these shapes in the human-made structures around us, especially trusses. Through a guided worksheet and teamwork, students explore the idea of dividing regular polygons into triangles, calculating the sums of angles in polygons using triangles, and identifying angles in shapes using protractors. They derive equations 1) for the sum of interior angles in a regular polygon, and 2) to find the measure of each angle in a regular n-gon. This activity extends students’ knowledge to engineering design and truss construction. This activity is the middle step in a series on polygons and trusses, and prepares students for the Polygon and Popsicle Trusses associated activity.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Andi Vicksman
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Sabina Schill
Date Added:
05/16/2019
Triangles & Trusses
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the fundamental strength of different shapes, illustrating why structural engineers continue to use the triangle as the structural shape of choice. Examples from everyday life are introduced to show how this shape is consistently used for structural strength. Along with its associated activity, this lesson empowers students to explore the strength of trusses made with different triangular elements to evaluate the various structural properties.

Subject:
Science
Scientific and Engineering Practices
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amanda Guiliani
Darcie Chinnis
Malinda Schaefer Zarske
Scott Duckworth
Date Added:
09/18/2014