Movement of ions in and out of cells is crucial to maintaining …
Movement of ions in and out of cells is crucial to maintaining homeostasis within the body and ensuring that biological functions run properly. The natural movement of molecules due to collisions is called diffusion. Several factors affect diffusion rate: concentration, surface area, and molecular pumps. This activity demonstrates diffusion, osmosis, and active transport through 12 interactive models.
This minds-on analysis and discussion activity helps students understand that cell size …
This minds-on analysis and discussion activity helps students understand that cell size is limited by the very slow rate of diffusion over any substantial distance and the insufficient surface-area-to-volume ratio for larger cells. In addition, students calculate why these problems do not apply to long slender cells or parts of cells (e.g. the axons of neurons that extend from your spinal cord to your foot). To maximize student participation and learning, I recommend that you have your students complete the questions individually or in pairs and then have a whole class discussion.
Students learn the principles of independent assortment and gene linkage in activities …
Students learn the principles of independent assortment and gene linkage in activities which analyze inheritance of multiple genes on the same or different chromosomes in hypothetical dragons. Students learn how these principles derive from the behavior of chromosomes during meiosis and fertilization.
In this simulation activity students mimic the processes of meiosis and fertilization …
In this simulation activity students mimic the processes of meiosis and fertilization to investigate the inheritance of multiple genes and then use their understanding of concepts such as dominant/recessive alleles, incomplete dominance, sex-linked inheritance, and epistasis to interpret the results of the simulation. This activity can be used as a culminating activity after you have introduced classical genetics, and it can serve as formative assessment to identify any areas of confusion that require additional clarification.
Students learn about enzyme function, enzyme specificity, and the molecular basis of …
Students learn about enzyme function, enzyme specificity, and the molecular basis of lactose intolerance through experiments with the enzyme lactase and analysis and discussion questions. Students engage in the scientific practices of designing and carrying out experiments and interpreting data. This activity is aligned with the Next Generation Science Standards.
In common experience, the term "adapting" usually refers to changes during an …
In common experience, the term "adapting" usually refers to changes during an organism's lifetime. In contrast, evolutionary biologists use the term "adaptation" to refer to a heritable trait that increases fitness. To help students reconcile these different concepts, this activity introduces the concept of phenotypic plasticity (the ability of an organism to adapt to different environments within its lifetime). Questions guide students in analyzing how the balance between the advantages and disadvantages of a characteristic (e.g. an animal's color) can vary in different circumstances, how phenotypic plasticity can be a heritable trait that can optimize fitness in a variable environment, and how natural selection can influence the amount of phenotypic plasticity in a population. This activity is designed to help high school students meet the Next Generation Science Standards and the Common Core State Standards.
In this online activity, learners discover how random variation influences biological evolution. …
In this online activity, learners discover how random variation influences biological evolution. Biological evolution is often thought of as a process by which adaptation is generated through selection.Œć While it is recognized that random variation underlies the process, emphasis is usually placed on selection and resulting adaptation, leaving a sense that it is selection that drives evolution.Œć This simulation highlights the creative role of random variation, offering a somewhat different perspective: that of evolution as open-ended exploration driven by randomness and constrained by selection, with adaptation as a dynamic, transient consequence rather than an objective.
Students develop their understanding of natural selection by analyzing specific examples and …
Students develop their understanding of natural selection by analyzing specific examples and carrying out a simulation. The questions in the first section introduce students to the basic process of natural selection, including key concepts and vocabulary. The second section includes a simulation activity, data analysis, and questions to deepen students' understanding of natural selection, including the conditions that are required for natural selection to occur. In the third section, students interpret evidence concerning natural selection in the peppered moth and answer questions to consolidate a scientifically accurate understanding of the process of natural selection, including the role of changes in allele frequency. This activity is aligned with the Next Generation Science Standards.
This product contains final experimental estimates of the Aboriginal and Torres Strait …
This product contains final experimental estimates of the Aboriginal and Torres Strait Islander (Indigenous), non-Indigenous and total populations of Australia at 30 June 2006, for various geographies.
This is a learning module that uses data to investigate the influence …
This is a learning module that uses data to investigate the influence of gender roles and attitudes about work and family on the household division of labor and childcare responsibilities.
Using this lesson plan students will be more aware of how plants …
Using this lesson plan students will be more aware of how plants and animals adapt to wildland fire. They will: Discuss the adaptive strategies of plants and animals to survive fire. Observe plants and animals in your local area. Design a plant or animal that is adapted for fire survival.
This minds-on analysis and discussion activity helps students to understand the relationships …
This minds-on analysis and discussion activity helps students to understand the relationships between food molecules as a source of energy, cellular respiration, physical activity, and changes in body weight.
In this hands-on activity students learn how a gene provides the instructions …
In this hands-on activity students learn how a gene provides the instructions for making a protein, and how genes can cause albinism or sickle cell anemia. Simple paper models are used to simulate the molecular processes of transcription and translation. This activity can be used to introduce students to these topics or to reinforce student understanding. In addition, students evaluate the advantages and disadvantages of different types of models included in this activity.
The goal of this exercise is to explore gender role attitudes in …
The goal of this exercise is to explore gender role attitudes in Japan and how they vary across different parts of the population. Crosstabulation will be used.
The goal of this exercise is to explore gender differences in occupation. …
The goal of this exercise is to explore gender differences in occupation. Summary statistics, including the mean, median, mode, and standard deviation will be used.
"Genetic Engineering Challenge - How can scientists develop a type of rice …
"Genetic Engineering Challenge - How can scientists develop a type of rice that could prevent vitamin A deficiency?" is an analysis and discussion activity. This activity begins with an introduction to vitamin A deficiency, rice seeds, and genetic engineering. Next, several questions challenge students to design a basic plan that could produce a genetically engineered rice plant that makes rice grains that contain pro-vitamin A. Subsequent information and questions guide students in developing an understanding of the basic techniques of genetic engineering. Students use fundamental molecular biology concepts as they think about how to solve a practical problem. This activity can be used to introduce students to genetic engineering or to reinforce basic understanding of genetic engineering.
This activity begins with sections that help students to understand basic principles …
This activity begins with sections that help students to understand basic principles of genetics, including (1) how genotype influences phenotype via the effects of genes on protein structure and function and (2) how genes are transmitted from parents to offspring through the processes of meiosis and fertilization. Then, a coin flip activity models the probabilistic nature of inheritance and Punnett square predictions; this helps students understand why the characteristics of children in many real families deviate from Punnett square predictions. Additional concepts covered include polygenic inheritance, incomplete dominance, and how a new mutation can result in a genetic condition that was not inherited. This activity helps students meet the Next Generation Science Standards.
These lessons demonstrate how a good understanding of mitosis, meiosis and fertilization …
These lessons demonstrate how a good understanding of mitosis, meiosis and fertilization and a basic understanding of the roles of DNA and proteins can provide the basis for understanding genetics. Important genetics concepts for students to learn are summarized and multiple learning activities are suggested to help students understand Punnett squares, pedigrees, dominant/recessive alleles, X-linked recessive alleles, incomplete dominance, co-dominance, test crosses, independent assortment, genetic linkage, polygenic inheritance, etc. This overview provides links to suggested activities which include hands-on simulation and laboratory activities, analysis of class data, review games and discussion activities and questions.
This game helps students to enjoy reviewing genetics vocabulary. Each card in …
This game helps students to enjoy reviewing genetics vocabulary. Each card in the deck has a target vocabulary word and two related taboo words that the student may not use when giving clues so the other students in his or her small group can guess the target word. Many students have trouble learning the substantial new vocabulary required for biology, and this game lets students have fun while reinforcing their understanding of key terms.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.