Measure relative humidity in the air using a simple device made of …
Measure relative humidity in the air using a simple device made of a temperature sensor, a plastic bottle, and some clay. Electronically plot the data you collect on graphs to analyze and learn from it. Experiment with different materials and different room temperatures in order to explore what affects humidity.
Watch a reaction proceed over time. How does total energy affect a …
Watch a reaction proceed over time. How does total energy affect a reaction rate? Vary temperature, barrier height, and potential energies. Record concentrations and time in order to extract rate coefficients. Do temperature dependent studies to extract Arrhenius parameters. This simulation is best used with teacher guidance because it presents an analogy of chemical reactions.
How did Rutherford figure out the structure of the atom without being …
How did Rutherford figure out the structure of the atom without being able to see it? Simulate the famous experiment in which he disproved the Plum Pudding model of the atom by observing alpha particles bouncing off atoms and determining that they must have a small core.
Add different salts to water, then watch them dissolve and achieve a …
Add different salts to water, then watch them dissolve and achieve a dynamic equilibrium with solid precipitate. Compare the number of ions in solution for highly soluble NaCl to other slightly soluble salts. Relate the charges on ions to the number of ions in the formula of a salt. Calculate Ksp values. Arabic Language.
Investigate what makes something soluble by exploring the effects of intermolecular attractions …
Investigate what makes something soluble by exploring the effects of intermolecular attractions and what properties are necessary in a solution to overcome them. Interactive models simulate the process of dissolution, allowing you to experiment with how external factors, such as heat, can affect a substance's solubility.
What happens when an excited atom emits a photon? What can we …
What happens when an excited atom emits a photon? What can we deduce about that atom based on the photons it can emit? A series of interactive models allows you to examine how the energy levels the electrons of an atom occupy affect the types of photons that can be emitted. Use a digital spectrometer to record which wavelengths certain atoms will emit, and then use this knowledge to compare and identify types of atoms. Students will be abe to:
Watch different types of molecules form a solid, liquid, or gas. Add …
Watch different types of molecules form a solid, liquid, or gas. Add or remove heat and watch the phase change. Change the temperature or volume of a container and see a pressure-temperature diagram respond in real time. Relate the interaction potential to the forces between molecules.
All cells, organs and tissues of a living organism are built of …
All cells, organs and tissues of a living organism are built of molecules. Some of them are small, made from only a few atoms. There is, however, a special class of molecules that make up and play critical roles in living cells. These molecules can consist of many thousands to millions of atoms. They are referred to as macromolecules (or large biomolecules).
Lesson length: 1-2 hoursGrade level: 6-8This is a three part lesson where …
Lesson length: 1-2 hoursGrade level: 6-8This is a three part lesson where students (1) explore elements (and their properties) that are used in materials to build and power a cell phone (any easily accessed, small, electronic machine could stand in for a cell phone), (2) approach activities though an engineering design thinking lens and participate in an active simulation of the movement of electricity (electrons) to power a device, and (3) participate in a Lego build where they experience set constraints to their building project. This can be related to the constraints engineers face as they build cell phones (or anything else).This material is based upon work supported by the National Science Foundation under Grant No. 1657263. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Lesson Length: 1-2 hoursGrade Level: 6-8Students build a water filter with a …
Lesson Length: 1-2 hoursGrade Level: 6-8Students build a water filter with a variety of natural and commercially produced materials. First they test the materials and then choose which to layer together themselves based on material performance. Students learn about water resources and engineered supports for the earth’s water systems and the impacts on environmental and human health. Engineering connections are highlighted throughout the lesson. Special thanks to Giles County, VA STEM Coordinator, Christina Martin, whose unit on The Global Water Crisis was the inspiration for this lesson. Also thanks to the NASA Water Filtration Challenge (https://www.jpl.nasa.gov/edu/teach/activity/water-filtration-challenge/) that helped guide Christina in the development of her lesson.This material is based upon work supported by the National Science Foundation under Grant No. 1657263. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Lesson length: 1-2 hoursGrade level: 6-8Students use a recipe to create bouncy …
Lesson length: 1-2 hoursGrade level: 6-8Students use a recipe to create bouncy balls and then measure the bounce of their ball to test damping qualities of different materials. Students practice using the scientific method and think about how engineers might use it.This material is based upon work supported by the National Science Foundation under Grant No. 1657263. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
This resource uses text, images, maps and a laboratory exercise to explain …
This resource uses text, images, maps and a laboratory exercise to explain how differences in the temperature and salinity of ocean water cause the formation of deep-ocean currents. It is part of the Jet Propulsion Laboratory's "Ocean Surface Topography from Space" website. This material is also available on the "Visit to An Ocean Planet" CD-ROM.
In this lesson, students will apply what they know about how to …
In this lesson, students will apply what they know about how to separate a mixture by designing a wastewater treatment facility that effectively removes contaminants.
Watch a string vibrate in slow motion. Wiggle the end of the …
Watch a string vibrate in slow motion. Wiggle the end of the string and make waves, or adjust the frequency and amplitude of an oscillator. Adjust the damping and tension. The end can be fixed, loose, or open.
Windmills have been used for hundreds of years to collect energy from …
Windmills have been used for hundreds of years to collect energy from the wind in order to pump water, grind grain, and more recently generate electricity. There are many possible designs for the blades of a wind generator and engineers are always trying new ones. Design and test your own wind generator, then try to improve it by running a small electric motor connected to a voltage sensor.
Test the pH of things like coffee, spit, and soap to determine …
Test the pH of things like coffee, spit, and soap to determine whether each is acidic, basic, or neutral. Visualize the relative number of hydroxide ions and hydronium ions in solution. Switch between logarithmic and linear scales. Investigate whether changing the volume or diluting with water affects the pH. Or you can design your own liquid!
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.