Explore how an mRNA copy is made of DNA. Protein complexes separate …
Explore how an mRNA copy is made of DNA. Protein complexes separate the DNA helix to allow complementary mRNA nucleotides to bind to the DNA sequence. The pairing of nucleotides is very specific.
Explore how a protein is made from an mRNA sequence. In translation, …
Explore how a protein is made from an mRNA sequence. In translation, the mRNA leaves the nucleus and attaches to a ribosome. Transfer RNA (tRNA) molecules bring amino acids to the ribosome. The tRNA pairs up with the mRNA nucleotide sequence in a specific complementary manner, ensuring the correct amino acid sequence in the protein.
Students will work with a partner or in groups to create a …
Students will work with a partner or in groups to create a physical model that shows how the Earth's seasons are directly impacted by its axial tilt. After completing this activity, the student will have a better understanding of the Earth's position in space, the Earth's rotation axis and seasons. Students will also use the model to observe changes in insolation between the equator and poles.
This initial module from the GENIQUEST project introduces the dragons and the …
This initial module from the GENIQUEST project introduces the dragons and the inheritance of their traits, then delves into meiosis and its relationship to inherited traits. Students examine the effects of choosing different gametes on dragon offspring, and learn about genetic recombination by creating recombination events to generate specific offspring from two given parent dragons. Students learn about inbred strains and breed an inbred strain of dragons themselves.
Science Instructional Plans (SIPs) help teachers align instruction with the Science Standards …
Science Instructional Plans (SIPs) help teachers align instruction with the Science Standards of Learning (SOL) by providing examples of how the content and the scientific and engineering practices found in the SOL and curriculum framework can be presented to students in the classroom.
Students design experiments to determine how substrate and environmental conditions influence growth …
Students design experiments to determine how substrate and environmental conditions influence growth of common molds. Students carry out their experiments, analyze and interpret their evidence, and prepare a report.
This overview reviews key concepts and learning activities to help students understand …
This overview reviews key concepts and learning activities to help students understand how genes influence our traits by molecular processes. Topics covered include basic understanding of the important roles of proteins and DNA; DNA structure, function and replication; the molecular biology of how genes influence traits, including transcription and translation; and the molecular biology of mutations. To help students understand the relevance of these molecular processes, the suggested learning activities link alleles of specific genes to human characteristics such as albinism, sickle cell anemia and muscular dystrophy. This overview provides links to suggested activities which include hands-on laboratory and simulation activities, web-based simulations, discussion activities and a vocabulary review game.
This game helps students to enjoy reviewing vocabulary related to molecular biology, …
This game helps students to enjoy reviewing vocabulary related to molecular biology, including DNA and RNA structure and function, transcription and translation. Each card in the deck has a target vocabulary word and two related taboo words that the student may not use when giving clues so the other students in his or her small group can guess the target word. Many students have trouble learning the substantial new vocabulary required for biology, and this game lets students have fun while reinforcing their understanding of key terms.
In this mind-on analysis and discussion activity students explore the effects of …
In this mind-on analysis and discussion activity students explore the effects of different types of point mutations and deletion mutations and analyze the reasons why deletion mutations generally have more severe effects than point mutations. Students use their understanding of the molecular biology of mutations to analyze the genetic basis for the differences in severity of two types of muscular dystrophy. To maximize student participation and learning, I recommend that you have your students complete the questions individually or in pairs and then have a whole class discussion.
Learn to identify different molecular shapes, to understand the interactions that create …
Learn to identify different molecular shapes, to understand the interactions that create these shapes, and how to predict a molecule's shape given certain information about it. Explore these concepts using three-dimensional computer models and answer a series of questions to reinforce your understanding.
Discover what controls how fast tiny molecular motors in our body pull …
Discover what controls how fast tiny molecular motors in our body pull through a single strand of DNA. How hard can the motor pull in a tug of war with the optical tweezers? Discover what helps it pull harder. Do all molecular motors behave the same?
In this activity, students interact with 12 models to observe emergent phenomena …
In this activity, students interact with 12 models to observe emergent phenomena as molecules assemble themselves. Investigate the factors that are important to self-assembly, including shape and polarity. Try to assemble a monolayer by "pushing" the molecules to the substrate (it's not easy!). Rotate complex molecules to view their structure. Finally, create your own nanostructures by selecting molecules, adding charges to them, and observing the results of self-assembly.
Add various unknown molecules to oil and water, and observe how the …
Add various unknown molecules to oil and water, and observe how the molecules sort themselves in response to interactions with the surrounding environment.
Explore the structure of a gas at the molecular level. Molecules are …
Explore the structure of a gas at the molecular level. Molecules are always in motion. Molecules in a gas move quickly. All molecules are attracted to each other. Molecules can be weakly or strongly attracted to each other. The way that large molecules interact in physical, chemical and biological applications is a direct consequence of the many tiny attractions of the smaller parts.
Explore the structure of a liquid at the molecular level. Molecules are …
Explore the structure of a liquid at the molecular level. Molecules are always in motion. Molecules in a liquid move moderately. All molecules are attracted to each other. Molecules can be weakly or strongly attracted to each other. The way that large molecules interact in physical, chemical and biological applications is a direct consequence of the many tiny attractions of the smaller parts.
Explore the structure of a solid at the molecular level. Molecules are …
Explore the structure of a solid at the molecular level. Molecules are always in motion, though molecules in a solid move slowly. All molecules are attracted to each other. Molecules can be weakly or strongly attracted to each other. The way that large molecules interact in physical, chemical and biological applications is a direct consequence of the many tiny attractions of the smaller parts.
Created by the Concord Consortium, the Molecular Workbench is "a modeling tool …
Created by the Concord Consortium, the Molecular Workbench is "a modeling tool for designing and conducting computational experiments across science." First-time visitors can check out one of the Featured Simulations to get started. The homepage contains a number of curriculum modules which deal with chemical bonding, semiconductors, and diffusion. Visitors can learn how to create their own simulations via the online manual, which is available here as well. The Articles area is quite helpful, as it contains full-text pieces on nanoscience education, quantum chemistry, and a primer on how transistors work. A good way to look over all of the offerings here is to click on the Showcase area. Here visitors can view the Featured simulations, or look through one of five topical sections, which include Biotech and Nanotechnology. Visitors will need to install the free Molecular Workbench software, which is available for Windows, Linux, and Mac.
This resource is the test I use at the end of the …
This resource is the test I use at the end of the 10th grade Biology unit on molecules of life. The main topics are macromolecules, pH, and water. It consists of 40 multiple choice questions, mainly knowlege/vocabulary based.
Under five mortality data for nearly all countries in the world from …
Under five mortality data for nearly all countries in the world from 2005-2008. A broader measure of child health than infant mortality, this is the probability of dying before ones fifth birthday given the current rates. Rates in countries vary widely from the world average of 67-per-1000 which is decreasing.
Try the new "Ladybug Motion 2D" simulation for the latest updated version. …
Try the new "Ladybug Motion 2D" simulation for the latest updated version. Learn about position, velocity, and acceleration vectors. Move the ball with the mouse or let the simulation move the ball in four types of motion (2 types of linear, simple harmonic, circle).
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.