Updating search results...

Search Resources

8105 Results

View
Selected filters:
Grade 4 Unit 7: Decimal Fractions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Unit 7 introduces students to an entirely new category of number—decimals. Students will explore decimals and their relationship to fractions, seeing that tenths and hundredths are particularly important fractional units because they represent an extension of the place value system into a new kind of number called decimals. Thus, students expand their conception of what a “number” is to encompass this entirely new category, which they will rely on for the remainder of their mathematical education.

Students have previously encountered an example of needing to change their understanding of what a number is in Grade 3, when the term came to include fractions. Their Grade 3 understanding of fractions (3.NF.A), as well as their work with fractions so far this year (4.NF.A, 4.NF.B), will provide the foundation upon which decimal numbers, their equivalence to fractions, their comparison, and their addition will be built. Students also developed an understanding of money in Grade 2, working with quantities either less than one dollar or whole dollar amounts (2.MD.8). But with the knowledge acquired in this unit, students will be able to work with money represented as decimals, as it so often is.

Thus, students rely on their work with fractions to see the importance of a tenth as a fractional unit as an extension of the place value system in Topic A, then expand that understanding to hundredths in Topic B. Throughout Topics A and B, students convert between fraction, decimal, unit, and expanded forms to encourage these connections (4.NF.6). Then students learn to compare decimals in Topic C (4.NF.7) and add decimal fractions in Topic D (4.NF.5). Finally, students apply this decimal understanding to solve word problems, including those particularly related to money, at the end of the unit. Thus, the work with money (4.MD.2) supports the major work and main focus of the unit on decimals.

While students will have ample opportunities to engage with the standards for mathematical practice, they’ll rely heavily on looking for and making use of structure (MP.7), particularly the structure of the place value system. They will also construct viable arguments and critique the reasoning of others (MP.3) using various decimal fraction models to support their reasoning.

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 4 Unit 8: Unit Conversions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this unit, students relate multiplication, particularly their understanding of “times as many” developed throughout Grade 4, to the conversion of measurement units. Students will also solve word problems involving measurement and measurement conversion.

In previous grades, students have worked with many of the metric and customary units (2.MD.1—6, 3.MD.1—2). They’ve noticed the relationship between some units to help them understand various measurement benchmarks but have not yet done any unit conversions. Not only does this unit build on measurement work from previous grades, but it also relies on myriad skills and understanding developed throughout Grade 4. As the Progressions state, “relating units within the metric system is another opportunity to think about place value” (Progressions for the Common Core State Standards in Mathematics, K-5 Geometric Measurement, p. 20). Further, “students also combine competencies from different domains as they solve measurement problems using all four arithmetic operations, addition, subtraction, multiplication, and division” (Progressions for the Common Core State Standards in Mathematics, K-5 Geometric Measurement, p. 20). Lastly, as directly stated in the language of 4.MD.2, students will convert units and solve problems involving fraction and decimal numbers. Thus, while the unit focuses on supporting cluster standards, their instruction enhances much of the major work of the grade, including place value (4.NBT.A), arithmetic operations (4.NBT.B), word problems (4.OA.A), and fractions (including decimal fractions) (4.NF).

As NCTM’s position statement on the metric system states, “Students need to develop an understanding of metric units and their relationships, as well as fluency in applying the metric system to real-world situations. Because some non-metric units of measure are common in particular contexts, students need to develop familiarity with multiple systems of measure, including metric and customary systems and their relationships" (The Metric System, NCTM). Thus, students will explore both metric and customary systems of measurement, starting with unit conversions from larger to smaller metric units in Topic A, and then similarly with customary units in Topic B. Then, in Topic C, students deal with more complex cases of fractional and decimal unit conversions. At the end of each topic, students apply their new learning in the context of solving multi-step word problems involving unit conversions.

The unit provides rich opportunities for students to engage with the mathematical practice standards. As the Progressions state, “relating units within the traditional system provides an opportunity to engage in mathematical practices, especially ‘look for and make use of structure’ (MP.7) and ‘look for and express regularity in repeated reasoning’ (MP.8)” (Progressions for the Common Core State Standards in Mathematics, K-5 Geometric Measurement, p. 20). Further, when students solve word problems that involve unit conversions, they "may use tape or number line diagrams for solving such problems (MP.1)" (Progressions for the Common Core State Standards in Mathematics, K-5 Geometric Measurement, p. 20).

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 5 CS: Algorithms & Programming Vocab Posters & Match-up
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Vocabulary posters for the Alogrithms & Programming strand for Grade 5. Words included are from the 2017 Computer Science Curriculum Framework (created by Kelley Odom).Vocab Match-up game or activity for the following words in the category of Algorithms and Programming Grade 5: Algorithm, Author, Bug, Composer, Conditional, Debug, Decompose, Illustrator, Loop, Planning Tool, Pseudocode, Source, Storyboard, and Variable. 

Subject:
Algorithms and Programming
Computer Science
Material Type:
Activity/Lab
Assessment
Binder
Homework/Assignment
Author:
Emily Ball
Date Added:
12/07/2021
Grade 5 Lesson - Copyright in the Real World, Music and Movies
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

To help students understand how to interact with the creative work all around them.
To give students an experience identifying copyrighted works.
To introduce students to Creative Commons for finding creative work.
To encourage students to respect artists’ rights as an important part of being an ethical digital citizen.

Subject:
Cross-Curricular
Material Type:
Lesson
Provider:
Virginia Internet Safety Advisory Council
Provider Set:
2024
Date Added:
03/15/2024
Grade 5 Unit 1: Place Value with Decimals
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In the first unit of Grade 5, students will build on their understanding of the structure of the place value system from Grade 4 (MP.7) by extending that understanding to decimals. By the end of the unit, students will have a deep understanding of the base-ten structure of our number system, as well as how to read, write, compare, and round those numbers.

In Grade 4, students developed the understanding that a digit in any place represents ten times as much as it represents in the place to its right (4.NBT.1). With this deepened understanding of the place value system, students read and wrote multi-digit whole numbers in various forms, compared them, and rounded them (4.NBT.2—3).

Thus, Unit 1 starts off with reinforcing some of this place value understanding of multi-digit whole numbers to 1 million, building up to that number by multiplying 10 by itself repeatedly. After this repeated multiplication, students are introduced to exponents to denote powers of 10. Then, students review the relationship in a whole number between a place value and the place to its left (4.NBT.1) and learn about the reciprocal relationship of a place value and the place to its right (5.NBT.1). Students also extend their work from Grade 4 on multiplying whole numbers by 10 to multiplying and dividing them by powers of 10 (5.NBT.2). After extensive practice with whole numbers, students then divide by 10 repeatedly to extend their place value system in the other direction, to decimals. They then apply these rules and perform these operations with powers of 10 to decimal numbers. Lastly, after deepening their understanding of the base-ten structure of our place value system, students read, write, compare, and round numbers in various forms (5.NBT.3—4).

As mentioned earlier, students will look for and make use of structure throughout the unit (MP.7). Students will also have an opportunity to look for and express regularity in repeated reasoning (MP.8), such as “when students explain patterns in the number of zeros of the product when multiplying a number by powers of 10 (5.NBT.2)” (PARCC Model Content Frameworks, p. 24).

This content represents the culmination of many years’ worth of work to deeply understand the structure of our place value system, starting all the way back in Kindergarten with the understanding of teen numbers as “10 ones and some ones” (K.NBT.1). Moving forward, students will rely on this knowledge later in the Grade 5 year to multiply and divide whole numbers (5.NBT.5—6) and perform all four operations with decimals (5.NBT.7). Students will also use their introduction to exponents to evaluate more complex expressions involving them (6.EE.1). Perhaps the most obvious future grade-level connection exists in Grade 8, when students will represent very large and very small numbers using scientific notation and perform operations on numbers written in scientific notation (8.EE.3—4). Thus, this unit represents an important conclusion to the underlying structure of our number system and opens the door to more complex mathematics with very large and very small numbers.

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 5 Unit 2: Multiplication and Division of Whole Numbers
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In Unit 2, students will build on their work on multi-digit multiplication and division from Grade 4 as well as their understanding of the structure of the base-ten system in Unit 1 to finalize fluency with multi-digit multiplication and extend multi-digit division to include two-digit divisors.

In Grade 4, students attained fluency with multi-digit addition and subtraction (4.NBT.4), a necessary skill for computing sums and differences in the standard algorithm for multiplication and division, respectively. Students also multiplied a whole number of up to four digits by a one-digit whole number, as well as two two-digit numbers (4.NBT.5). By the end of Grade 4, students can compute those products using the standard algorithm, but “reason repeatedly about the connection between math drawings and written numerical work, help[ing] them come to see multiplication and division algorithms as abbreviations or summaries of their reasoning about quantities” (Progressions for the CCSSM, “Number and Operation in Base Ten, K-5", p. 14). Students also find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors (4.NBT.6). Similar to multiplication, by the end of Grade 4, students can compute these quotients using the standard algorithm alongside other strategies and representations so that the algorithms are meaningful rather than rote.

Unit 2 of Grade 5 begins with writing, evaluating, and interpreting simple numerical expressions (5.OA.1, 5.OA.2). This serves both to review basic multiplication and division facts, which supports major content later on in the unit, and as a way to record calculations that will grow increasingly complex as the unit progresses. Then, students solidify the standard algorithm for multiplication with the computational cases from Grade 4 before extending its use to larger and larger factors (5.NBT.5). Next, students follow a similar progression with division, first computing quotients involving cases from Grade 4 using a variety of strategies and then extending those methods to computations involving two-digit divisors. Note, however, that unlike multiplication, fluency with the standard division algorithm is not expected until Grade 6 (6.NS.2). Throughout the unit, students “learn to use [the] structure [of base-ten numbers] and the properties of operations to reduce computing a multi-digit…product or quotient to a collection of single-digit computations in different base-ten units” (MP.7) (Progressions for the CCSSM, “Number and Operation in Base Ten, K-5", p. 4). Further, “repeated reasoning (MP.8) that draws on the uniformity of the base-ten system is a part of this process” (Progressions for the CCSSM, “Number and Operation in Base Ten, K-5", p. 4).

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 5 Unit 3: Shapes and Volume
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In Unit 3, students will explore volume of three-dimensional shapes (5.MD.3—5), connecting it to the operations of multiplication and addition (5.NBT.5, 4.NBT.4). They also use their understanding that they gradually built in prior grade levels to classify shapes in a hierarchy, seeing that attributes of shapes in one category belong to shapes in all subcategories of that category (5.G.3—4).

This unit builds off of students’ well-established understanding of geometry and geometric measurement. Similar to students’ work with area, students develop an understanding of volume as an attribute of solid figures (5.MD.3) and measure it by counting unit cubes (5.MD.4). Students then connect volume to the operation of multiplication of length, width, and height or of the area of the base and the height and to the operation of addition to find composite area (5.MD.5). Throughout Topic A, students have an opportunity to use appropriate tools strategically (MP.5) and make use of structure of three-dimensional figures (MP.7) to draw conclusions about how to find the volume of a figure.

Students then move on to classifying shapes into categories and see that attributes belonging to shapes in one category are shared by all subcategories of that category (5.G.3). This allows students to create a hierarchy of shapes over the course of many days (5.G.4). Throughout this topic, students use appropriate tools strategically (MP.5) to verify various attributes of shapes including their angle measure and presence of parallel or perpendicular lines, as well as attend to precision in their use of language when referring to geometric figures (MP.6). They also look for and make use of structure to construct a hierarchy based on properties (MP.7).

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 5 Unit 4: Addition and Subtraction of Fractions/Decimals
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In the fourth unit for Grade 5, students extend their computational work to include fractions and decimals, adding and subtracting numbers in those forms in this unit before moving to multiplication and division in subsequent units.

Unit 4 starts with a refresher on work in Grade 4, starting with generating equivalent fractions and adding and subtracting fractions with like terms. While students are expected to already have these skills, they help to remind students that one can only add and subtract quantities with like units, as well as remind students of how to regroup with fractions. Then, students move toward adding and subtracting fractions with unlike denominators. They start with computing without regrouping, then progress to regrouping with small mixed numbers between 1 and 2, and then to regrouping with mixed numbers. Throughout this progression, students also progress from using more concrete and visual strategies to find a common denominator, such as constructing area models or number lines, toward more abstract ones like multiplying the two denominators together and using that product as the common denominator (5.NF.1). Then, students use this general method in more advanced contexts, including adding and subtracting more than two fractions, assessing the reasonableness of their answers using estimation and number sense (MP.1), and solving one-, two-, and multi-step word problems (5.NF.2), (MP.4). Then, the unit shifts its focus toward decimals, relying on their work in Grade 4 of adding and subtracting decimal fractions and their deep understanding that one can only add like units, including tenths and hundredths as those units, to add and subtract decimals (5.NBT.7). They use concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction, relating the strategy to a written method and explain the reasoning used (MP.1). Students then apply this skill to the context of word problems to close out the unit (MP.4).

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 5 Unit 5: Multiplication and Division of Fractions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In Grade 5 Unit 5, students continue their exploration with fraction operations, deepening their understanding of fraction multiplication from Grade 4 and introducing them to fraction division.

Students began learning about fractions very early, as described in the Unit 4 Unit Summary. However, students’ exposure to fraction multiplication only began in Grade 4, when they learned to multiply a fraction by a whole number, interpreting this as repeated addition. For example, 4×2/3 is thought of as 4 copies of 2 thirds. This understanding is reliant on an understanding of multiplication as equal groups (3.OA.1). In Grade 4, however, students also developed an understanding of multiplicative comparison (4.OA.1), which will be of particular importance to the new ways in which students will interpret fraction multiplication in this unit.

The unit begins with students developing a new understanding of fractions as division. In the past, they’ve thought of fractions as equal-sized partitions of wholes, but here they develop an understanding of a fraction as an operation itself and represent division problems as fractions (5.NF.3). Students now see that remainders can be interpreted in yet another way, namely divided by the divisor to result in a mixed-number quotient. Then, students develop a new understanding of fraction multiplication as fractional parts of a set of a certain size (5.NF.4), which is a new interpretation of multiplicative comparison. Students use this understanding to develop general methods to multiply fractions by whole numbers and fractions, including mixed numbers. Throughout this work, students develop an understanding of multiplication as scaling (5.NF.5), “an important opportunity for students to reason abstractly” (MP.2) as the Progressions notes (Progressions for the Common Core State Standards in Mathematics, Number and Operations - Fractions, 3-5, p. 14). Then, students explore division of a unit fraction by a whole number and a whole number by a unit fraction (5.NF.7), preparing students to divide with fractions in all cases in Grade 6 (6.NS.1). Then, students also solve myriad word problems, seeing the strategies they used to solve word problems with whole numbers still apply but that special attention should be paid to the whole being discussed (5.NF.6, MP.4), as well as write and solve expressions involving fractions as a way to support the major work (5.OA.1, 5.OA.2). Finally, students make line plots to display a data set of measurements in fractions of a unit and solve problems involving information presented in line plots (5.MD.2), a supporting cluster standard that supports the major work of this and the past unit of using all four operations with fractions (5.NF).

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 5 Unit 6: Multiplication and Division of Decimals
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In Unit 6, students use their procedural knowledge of multiplication and division with whole numbers, combined with their newly acquired understanding of multiplication and division with fractions, to multiply and divide with decimals, reasoning about the placement of the decimal point. They then apply this to the context of word problems, including those involving measurement conversion.

This unit starts with multiplying a decimal by a single-digit whole number, then multiplying a decimal by a multi-digit whole number, and finally multiplying a decimal by another decimal. Then, students progress to dividing a decimal by a single-digit whole number, then dividing a decimal by a two-digit whole number, and finally solving cases involving decimal divisors. Throughout these topics, students use the same methods to compute decimal products and quotients as they did for whole-number products and quotients, but they must reason about the placement of the decimal point. It is only in the last lesson of each topic that students generalize the pattern of the placement of the decimal point. The various lines of reasoning, and their advantages and disadvantages, can be read on pages 19 and 20 of the NBT Progression linked in the “Unit-Specific Intellectual Preparation” section. Students also solve myriad word problems as well as write and solve expressions involving decimals as a way to support the major work (5.OA.1, 5.OA.2). Finally, the unit closes with students learning to convert among different-sized customary measurement units within a given measurement system and solve word problems that use those conversions (5.MD.1), which extends the work from Grade 4 of converting from a larger unit of measurement to a smaller one in Grade 4 (4.MD.1—2). As noted in the Progressions, “this is an excellent opportunity to reinforce notions of place value for whole numbers and decimals, and the connection between fractions and decimals (e.g., meters can be expressed as 2.5 meters or 250 centimeters)” (GM Progression, p. 26), as well as computations with these types of numbers (5.NBT.7, 5.NF), thus connecting the work of unit conversion with major work of the grade.

Reasoning about the placement of the decimal point affords students many opportunities to engage in mathematical practice, such as constructing viable arguments and critiquing the reasoning of others (MP.3) and looking for and expressing regularity in repeated reasoning (MP.8). For example, “students can summarize the results of their reasoning as specific numerical patterns and then as one general overall pattern such as ‘the number of decimal places in the product is the sum of the number of decimal places in each factor’” (NBT Progression, p. 20).

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 5 Unit 7: Patterns and the Coordinate Plane
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In Unit 7, the final unit of the year for Grade 5, students are introduced to the coordinate plane and use it to represent the location of objects in space, as well as to represent patterns and real-world situations.

Students have coordinated numbers and distance before, namely with number lines. Students were introduced to number lines with whole-number intervals in Grade 2 and used them to solve addition and subtraction problems, helping to make the connection between quantity and distance (2.MD.5—6). Then in Grade 3, students made number lines with fractional intervals, using them to understand the idea of equivalence and comparison of fractions, again connecting this to the idea of distance (3.NF.2). For example, two fractions that were at the same point on a number line were equivalent, while a fraction that was further from 0 than another was greater. Then, in Grade 4, students learned to add, subtract, and multiply fractions in simple cases using the number line as a representation, and they extended it to all cases, including in simple cases involving fraction division, throughout Grade 5 (5.NF.1—7). Students’ preparation for this unit is also connected to their extensive pattern work, beginning in Kindergarten with patterns in counting sequences (K.CC.4c) and extending through Grade 4 work with generating and analyzing a number or shape pattern given its rule (4.OA.3).

Thus, students start the unit thinking about the number line as a way to represent distance in one dimension and then see the usefulness of a perpendicular line segment to define distance in a second dimension, allowing any point in two-dimensional space to be located easily and precisely (MP.6). After a lot of practice identifying the coordinates of points as well as plotting points given their coordinates with coordinate grids of various intervals and scales, students begin to draw lines and figures on a coordinate grid, noticing simple patterns in their coordinates. Then, after students have grown comfortable with the coordinate plane as a way to represent two-dimensional space, they represent real-world and mathematical situations, as well as two numerical patterns, by graphing their coordinates. This visual representation allows for a rich interpretation of these contexts (MP.2, MP.4).

Subject:
Mathematics
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Unit of Study
Provider:
Match Fishtank
Date Added:
01/01/2017
Grade 5 Valentine Day Lesson
Unrestricted Use
CC BY
Rating
0.0 stars

This learning resource provides students insight into combining and subdividing figures as well as utilizing the understanding of quadrilaterals.  Along with the exploration, students will be developing critical thinking through the decisions that are made to create the final mathematical product.  They will also communicate through collaboration to produce a final mathematical product.  They will also develop creative thinking and citizenship by producing a written piece to show their caring and understanding nature.

Subject:
Mathematics
Writing
Material Type:
Lesson
Author:
Elizabeth Silva
Date Added:
07/14/2020